		nadir			
\mathbf{Model}	Group	D1-5 100		D1-5 400	
M1	$35 \ \mathrm{PMs}$	1.6	± 0.8	0.3	± 0.2
		(0.0)	3.6)	(0.0)	0.8)
M2	$35 \ \mathrm{PMs}$	1.7	± 0.8	0.3	± 0.2
		(0.5)	3.7)	(0.1	1.0)
M3	$35 \ \mathrm{PMs}$	1.8	± 0.9	0.4	± 0.2
		(0.8)	4.3)	(0.2	1.1)
M4	$35 \ \mathrm{PMs}$	1.7	± 1.0	0.4	± 0.2
		(0.8	4.9)	(0.2	1.1)
M5	$35 \ \mathrm{PMs}$	1.7	± 1.1	0.4	± 0.2
		(0.7	5.5)	(0.2	1.0)
M6	$35 \ \mathrm{PMs}$	1.5	± 1.1	0.4	± 0.3
		(0.9	5.9)	(0.2	1.2)
Μ7	$35 \ \mathrm{PMs}$	0.5	± 0.5	0.1	± 0.3
		(0.1)	3.4)	(0.0)	1.0)
M8	$35 \ \mathrm{PMs}$	0.1	± 0.1	0.1	± 0.1
		(0.0	0.4)	(0.0)	0.4)
M9	$35 \ \mathrm{PMs}$	0.7	± 0.4	0.2	± 0.1
		(0.1	1.6)	(0.0)	0.5)
M10	$35 \ \mathrm{PMs}$	2.1	± 1.3	0.6	± 0.4
		(0.6	5.8)	(0.1	1.8)
M11	$35 \ \mathrm{PMs}$	1.6	± 1.1	0.4	± 0.2
		(0.9	5.5)	(0.2	1.0)
M12	$35 \ \mathrm{PMs}$	2.4	± 1.2	0.7	± 0.5
		(0.8	5.8)	(0.1	2.1)

S2 Table. Comparison of model predictions for low-dose treatment schedules.

As in Table 4, predicted *nadir* values for different treatment schedules are shown, based on underlying mathematical models M1–M12. Shown are the values of median, standard deviation, minimum and maximum (in brackets) for two low-dose schedules. Both assume a continuous infusion throughout days 1 to 5, with either 100 mg/m^2 or 400 mg/m^2 Ara-C per day. No clinical observations are available to compare these predictions, but they give additional insight on the possibility to discriminate models M1–M12 and a general trend showing that for 100 mg/m^2 per day despite of M7-M9 almost all nadir values are above 1 G/L. The nadir values for the low-dose infusion with 400 mg/m^2 Ara-C per day are in the same range compared to the results of the high-dose schedules (Two further personalised cycles were excluded because for some models no recovery after chemotherapy was observed). The simulated nadirs above 1 G/L for the low-dose schedule (100 mg/m^2) reflect the lower toxic effects represented by required hospitalisation due to fever and neutropenia and platelet transfusions compared to the low-dose (400 mg/m^2) and high-dose schedules explored in [3]. As M7-M9 are not able to reflect the lower toxic effects through higher nadir values, the simulation study serves as an indicator that the secondary effect of Ara-C may not be an Ara-C induced reduction of the transition rate.