
S1 Appendix. Methods.

In the section on resilience, resilient properties, and probabilistic models we have

explored the concepts of l-resistance, f -functionality, 〈p, q〉-recoverability,

〈z, r〉-resilience, and hidden Markov models. We explained that the traditional HMM

framework requires to become a c-HMM in order to support the formal definition of

resilience given by Schwind et al. [1]:

c-HMM = 〈P (S0), P (Ot | St), P (St+1 | St), c : Ω(S)→ R+〉 (1)

c-HMMs extend the HMM framework with a static cost function c, defined over the

domain Ω of its (random) state variable S, and taking positive values in R. We use the

single discrete state variable S of a HMM as a way to represent, by enumeration, the

state configuration. This information, in the constraint-based systems CBSs, was

encoded using the set of variables X, and assignment ς. On top of the c-HMM

framework, we can define the random variables associated to trajectory of states, TS,

and trajectory of observations, TO, and show how to compute their (conditioned and

unconditioned) probability distributions. All the concepts presented in this section are

implemented and evaluated using the open-source Matlab-compatible GNU Octave

language.

States, observations, costs, and trajectories

In the SR-model, the definition of the resilient properties was based on the concepts of

SSTs and their corresponding sequences of costs. In c-HMMs, we have similar

constructs for states and costs, as well as observations. The main difference is that

these concepts are now built on top of random variables [2] and, therefore, they also can

be associated with probability distributions. Given a c-HMM and a finite time horizon

T , we define its trajectory of states TS as the sequence of state variables

Si ∀i ∈ {1, . . . , T}. This can be rewritten as: TS := S0, S1, . . . , ST .

S is a random variable and, therefore, TS is also a random variable. The number of

possible assignments of TS grows exponentially with the time horizon:

|Ω(TS)| = |Ω(S)|T . Because the mapping provided by the cost function c is purely
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deterministic, each assignment of TS is unambiguously associated with a trajectory of

costs tc = c(s0), c(s1), . . . , c(sT ) and TC is a random variable with

|Ω(TC)| ≤ |Ω(TS)| = |Ω(S)|T .

Similar considerations are also valid for trajectories of observations

TO := O0, O1, . . . , OT and their possible assignments to := o0, o1, . . . , oT . If neither the

transition model nor the sensor model contain probability values of 0, all possible

sequences of states can potentially occur and produce any one of the sequences of

observations. Therefore, the number of all possible configurations—i.e. entries in the

joint probability distribution (JPD)—of a c-HMM is:

(|Ω(S)| · |Ω(O)|)T (2)

This number, in principle, represents the maximum (worst-case) complexity of

performing inference on our model. However, as we explained in the section on

complexity, when dealing with real-world environments and the resilient properties, we

are only interested in a very specific type of inference queries. That is, those queries

that can return one of the |S|T probability values of the conditional probability

distribution of TS with respect to a given to:

P (TS | to) = P (S0, S1, . . . , ST | o0, o1, . . . , oT ) (3)

This is due to the fact that: (1) the state variable S is also called the “hidden” variable

as it is, in practice, never directly observable (making the actual ts taken by TS

unknown); and (2) the values taken by the observation variable O are, in most cases,

the one piece of partial/imperfect information that we can always access.

From the probability of cost trajectories to the probability of

properties

We have seen that the resilient properties—once their parameters are fixed—can be

considered as boolean attributes of sequences of costs associated to SSTs. In the context

of the c-HMM framework, we say that an assignment of the trajectory of states

ts = s0, s1, . . . enforces the property φ if and only if its corresponding trajectory of
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costs tc = c(s0), c(s1), . . . is satisfies the definition of that property, i.e.

φ(c(s0), c(s1), . . . ) = true. Computing the probability distribution of parametric

properties φ(k), such as resistance and functionality, with respect to their parameters,

can provide valuable insights, as shown in S1 Fig: a rapid drop in the probability

distribution might suggest the existence of a threshold cost that is unlikely to be

overcome. The probability of a property P (φ) is equal to the sum of the probabilities of

all the distinct trajectories of costs in which φ holds:

P (φ) =
∑

∀i∈{i|φ(tci)=true}

P (tci) (4)

S1 Fig. Critical thresholds of parametric properties. Probability distribution of
the parametric resilient properties in a template scenario where ∀s, c(s) ∈ [0, . . . , 4].
The discontinuities reveal the potentially critical thresholds for different properties.

In turn, the probability of a fixed assignment of the trajectory of costs tc is equal to

the sum of the probabilities of all the distinct trajectories of states that are mapped to

tc by the cost function c. To simplify the notation, we will also use C(ts) to indicate the

trajectory tc = c(s0), c(s1), . . . resulting from the application of the cost function c to

the assignment ts.

P (tc) =
∑

∀i∈{i|C(tsi)=tc}

P (tsi) (5)

Plugging Eq 5 into Eq 4, one can compute the probability of a property φ as a

function of the probabilities of distinct assignments of the trajectory of states (Eq 6).

We observe that all the possible assignments of TS are “distinct” by definition, even if

many of them could be mapped by c to identical trajectories of costs.

P (φ) =
∑

∀i∈{i|φ(tci)=true}

∑
∀j∈{j|C(tsj)=tci}

P (tsj) (6)

Having assumed to be able to observe the system by its trajectory of observations

TO, we are then interested in computing the conditional distribution of φ with respect

to the assignment to of TO. To do so, we start from Eq 6 and we re-write it with the
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addition of conditioning on both sides by to:

P (φ | to) =
∑

∀i∈{i|φ(tci)=true}

∑
∀j∈{j|C(tsj)=tci}

P (tsj | to) (7)

Eq 7 shows that computing the probability of a property φ, given an assignment of

the trajectory of observations to, consists of two different subproblems: (1) identifying

the assignments of the trajectory of states TS that map to assignments of the trajectory

of costs TC that satisfy the property; (2) computing the conditional probability of these

assignments of TS with respect to the assignment of the trajectory of observations to.

As we discussed in the section on general property checking, the first problem strictly

depends on the nature of the property we are evaluating. The second problem, instead,

can be efficiently tackled in its general form by combining different inference methods

for HMMs, as shown in the following sections.

Traditional HMM inference

The most common algorithms for exact inference in HMMs are: the forward algorithm,

the forward-backward algorithm and the Viterbi algorithm [3]. The first two answer

queries about marginal probabilities while the third enables maximum a posteriori

(MAP) inference [4]. More specifically, the forward algorithm can be used to compute

the probability distribution of the current (or the upcoming) hidden variable, given a

sequence of observations. This operation is often referred to as filtering (or prediction):

P (ST | o1, . . . , oT )

P (ST+1 | o1, . . . , oT )

(8)

The forward-backward algorithm allows to refine the estimate (smoothing) of the

probability distribution of a hidden variable using subsequently collected information,

that is, computing:

P (SN | o1, . . . , oT ) (9)
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when 1 ≤ N ≤ T . Finally, the Viterbi algorithm allows to discover the most likely

sequence of assignments of the hidden variable for a given sequence of observations:

argmax
s0,...,sT

P (s0, . . . , sT | o1, . . . , oT ) (10)

All these algorithms have time-complexity that is linear with the length of the sequence

of observations they take as input: O(T ) [3]. However, none of these algorithms directly

provides an answer to the family of queries that we are interest in for the scope of this

work. That is, the a posteriori probabilities of arbitrary sequences of assignments of the

hidden variable for a given sequence of observations, such as:

P (s0, . . . , sT | o1, . . . , oT ) = P (ts|to) (11)

(Note that the output of the Viterbi algorithm is only one, specific sequence of

assignments and not a probability value.)

Efficient inference

The easiest, but highly inefficient, way to find the probability value of P (ts|to) consists

of computing the complete joint probability distribution of the c-HMM over the time

horizon T . Because HMMs are Bayesian networks, their JPD is equal to the chain

product of all the conditional probability distributions (CPDs) in their nodes. Then,

one can condition by the evidence of to, and finally re-normalize the entire distribution

so that it sums up to 1. This is clearly an unsustainably expensive approach because

computing the JPD requires time and space complexity of O(Ω(S) · Ω(O))T .

Instead, we propose a much more efficient algorithm to compute the conditional

probability of a finite state trajectory assignment s0, . . . , sT with respect to the

observation trajectory assignment o0, . . . , oT . To do so, we start by re-writing the

probability value of interest using the Bayes’ theorem:

P (s0, . . . , sT | o1, . . . , oT ) = [P (o0, . . . , oT | s0, . . . , sT ) · P (s0, . . . , sT )] · P (o0, . . . , oT )−1 = Υ0 ·Υ1 ·Υ2 (12)

Eq 12 shows how to decompose the problem into the computation of three factors

that we call Υ0, Υ1, and Υ2 and can be tackled separately. Given an assignment of the
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state variables, the conditional probability of a sequence of observations Υ0 can be

computed as the product of the appropriate entries of the sensor model.

Υ0 = P (o0, . . . , oT | s0, . . . , sT ) =

T∏
i=1

P (Ot = oi | St = si) (13)

The probability of an assignment of the trajectory of states TS (notwithstanding the

values taken by the observations variables) Υ1, only depends on the transition model

P (St+1 | St) and the ground belief P (S−1): first, we need to compute the probability of

S0 taking the value of s0 as P (S0 = s0) =
∑
∀s∈Ω(S) P (St+1 = s0 | St = s)P (S−1 = s);

then, the probability of the entire trajectory can be computed multiplying the

appropriate entries of the transition model.

Υ1 = P (s0, . . . , sT ) = P (S0 = s0) ·
T∏
i=1

P (St+1 = si | St = si−1) (14)

The computation of this latter factor, Υ2, is the trickiest: it can be performed

efficiently using a dynamic programming technique derived from the forward algorithm

as explained in [5]. This technique iteratively computes the quantity

P (o0, . . . , oT )—from now on re-written as F (T, sT )—using the transition and sensor

models. The initialization step of the algorithm is:

∀x ∈ Ω(S) F (1, x) = P (S0 = x) · P (O0 = o0 | S0 = x) (15)

The distribution of P (S0) can be computed just like we did for Eq 14. The iteration

step of the algorithm is:

∀x ∈ Ω(S) F (t+ 1, x) =
∑

y∈Ω(S)

F (t, y) · P (St+1 = x | St = y) · P (Ot = o1 | St = x) (16)

Finally, having iterated the algorithm until T , the inverse of Υ2 is computed as the

sum over all possible values of ST :

1

Υ2
= P (o0, . . . , oT ) =

∑
∀x∈Ω(S)

F (T, x) (17)

With the values of the three factors Υ0, Υ1, and Υ2, we can finally compute the
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conditional probability of the assignment of a trajectory of states, given the assignment

of a trajectory of observations as:

P (s0, . . . , sT | o0, . . . , oT ) = Υ0 ·Υ1 ·Υ2 (18)

The detailed analysis of the time- and space-complexity of the computation of all

three factors is given in the main body of this article: the most relevant result is the

fact that the overall time-complexity is linear w.r.t. the time horizon T .

Source code, scripts, and datasets

All the Octave scripts used to validate the proposed algorithm and perform the

numerical simulations, a README file, as well as the LATEXsource of the pseudo-code

of the main inference algorithm are available as an open GIT repository at:

https://github.com/JacopoPan/probabilistic-resilience
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