S1 Appendix One-period probability adjustments

One-period probability adjustments

The time between interviews for HRS is normally distributed about 23.8 months (see S4 Fig). NLSY is bi-normally distributed about 12.4 and 24.1 months (S4 Fig), since after 1994 interviews were performed every 2 years as opposed to every one year. For HRS, NLSY-pre-1994, and NLSY-post-1994 we calculate regression parameters (see tables A-F in S1 Tables). The parameters are then logit transformed to calculate probability of survival between t and $t+i$, and probability of transitioning between t and $t+i$. We then adjust i to be 12 months, a one year period.

To calculate our one-year state transition rates from one age to the next age, $t(x)_{21}$ and $t(x)_{22}$, from the logit transformed regression coefficients we use the following equation:

$$
\left[\begin{array}{ll}
t_{11} & t_{12} \tag{20}\\
t_{21} & t_{22}
\end{array}\right]=\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right]^{12 / i}
$$

Where r_{21} and r_{22} are the logit transformed regression parameters and $r_{11}=1-r_{21}$ and $r_{12}=1-r_{22}$. Note, every variable is a function of age, x, but we leave the x out here for clarity. i is either $12.4,24.1$, or 23.8 depending on the data-set, and for our matrix and power values we have a defined root. (In our case our matrices are nonsingular (with nonzero determinants, nonzero eigenvalues) and since all eigenvalues are positive and the matrix is real there is a distinguished root that is real. (Theorem 2.5 Higham and Al-Mohy (2010) [8])

To calculate our one-year survival rates for each age, $s(x)_{1}$ and $s(x)_{2}$, from the logit transformed regression coefficients, c_{1} and c_{2}, we estimate with the following equations:

$$
\begin{align*}
& c_{1}=s_{1}^{2} t_{11}+s_{1} s_{2} t_{21} \tag{21}\\
& c_{2}=s_{2}^{2} t_{22}+s_{2} s_{1} t_{12} \tag{22}
\end{align*}
$$

In this case, we estimate that $\mathrm{i}=2$ and use this formula for NLSY-post-1994 and HRS. We use the transition probabilities, t_{11} etc., calculated from above. Here c_{1}, the logit transformed regression coefficient, is the probability of survival between t and $t+i \approx t+2$, for those below threshold. And c_{2} is the same for those above income threshold. Again, every variable is a function of age x. We estimate that for NLSY-pre-1994 $c_{1}=s_{1}$.

