S1 Algorithm. Pseudo-code of ToPs/R

Off-line Stage 0: Dividing the dataset (D)

Input: Entire dataset D

Divide D into disjoint training set (S), the first validation set (V^1) , the second validation set (V^2) and testing set (T) which satisfy $D = S \cup V^1 \cup V^2 \cup T$ **Output:** Training set S, validation sets V^1, V^2 , and testing set T

Off-line Stage 1: Growing the Optimal Tree of Predictors

Input: Feature space X, a set of algorithms \mathcal{A} , training set S, the validation set V^1 **First step:** Initial tree of predictors = (X, h_X) where $h_X = \arg \min_{A \in \mathcal{A}}$ **Recursive step:**

Input: Current tree of predictors $(T, \{h_C\})$

for each terminal node $C \in T$ do

for a feature i and a threshold τ_i do

Set $C^{-}(\tau_{i}) = \{x \in C : x_{i} < \tau_{i}\}, C^{+}(\tau_{i}) = \{x \in C : x_{i} \geq \tau_{i}\}$, Then, $\{i^{*}, \tau_{i}^{*}, h_{C^{-}(\tau_{i}^{*})}, h_{C^{+}(\tau_{i}^{*})}\} = \arg \min \mathcal{L}(h^{-} \cup h^{+}, V^{1}(C^{-}(\tau_{i})) \cup V^{1}(C^{+}(\tau_{i})))$ where $h^{-} \in A(C^{-}(\tau_{i})^{\uparrow}), h^{+} \in A(C^{+}(\tau_{i})^{\uparrow})$

Stopping Criteria: $\mathcal{L}(h_C, V^1(C)) \leq \min \mathcal{L}(h^- \cup h^+, V^1(C^-(\tau_i)) \cup V^1(C^+(\tau_i)))$ Output: Locally optimal tree of predictors $(T, \{h_C\})$

Off-line Stage 2: Weights Optimization on the Path

Input: Locally optimal tree of predictors $(T, \{h_C\})$, the second validation set V^2 for each terminal node \bar{C} and the corresponding path Π from X to \bar{C} do

for each weight vector $w = (w_C)$, do

Define $H_w = \sum_{C \in \Pi} w_C h_C$, Then,

 $w^*(\Pi) = (w^*(\Pi, \vec{C})) = \arg\min \mathcal{L}(H_w, V^2(\vec{C}))$

Output: Optimized weights $w^*(\Pi)$ for each terminal node \overline{C} and corresponding path Π

On-line Stage: Overall Predictor

Input: Locally optimal tree of predictors $(T, \{h_C\})$, optimized weights $w^*(\Pi)$, and testing set T

Given a feature vector x

Find the unique path $\Pi(x)$ from X to terminal node containing x

Then, $H(x) = \sum_{C \in \Pi(x)} w^*(\Pi, C) h_C(x)$

Output: The final prediction H(x)