Scenario	Assumptions
2011 Baseline Scenario	 Production, imports, exports, stocks, seed, feed, and non-food uses from FAO Food Balance Sheets (http://faostat.fao.org/beta/en/#home). Production, postharvest, processing, distribution and household waste percentage figures by commodity type from FAO (2011) Global food losses and food waste – Extent, causes and prevention. These factors are provided in Table S3. Nutritional composition factors based on global average used in FAO Food Balance Sheet Handbook. 2011 population figures based on UN Population Prospects of 1.2474 billion. Coefficient variation in caloric, protein and fat of 0.26 based on log-normal distribution from FAO (2014).
2030 Baseline Scenario	 Yield (and food production) stagnates at 2011 levels. 2030 population figures based on UN Population Prospects of 1.5276 billion. Coefficient variation in caloric, protein and fat of 0.26 based on log-normal distribution from FAO (2014).
Scenario 1 (2030): Halving food losses	 Percentage losses from production, postharvest, processing and distribution were halved their values in baseline scenario. Yield (and food production) stagnates at 2011 levels. 2030 population figures based on UN Population Prospects of 1.5276 billion. Coefficient variation in caloric, protein and fat of 0.26 based on log-normal distribution from FAO (2014).
Scenario 2 (2030): achieving 50% attainable yields (AY)	 Yields for all commodities assumed 50% of their India- specific attainable yield value from Mueller et al. (2012). Loss and waste percentages assumed the same as in baseline scenario. 2030 population figures based on UN Population Prospects of 1.5276 billion. Coefficient variation in caloric, protein and fat of 0.26 based on log-normal distribution from FAO (2014).
Scenario 3 (2030): achieving 75% attainable yields (AY)	 Yields for all commodities assumed 75% of their India- specific attainable yield value from Mueller et al. (2012). Loss and waste percentages assumed the same as in baseline scenario. These factors are provided in Table S3. 2030 population figures based on UN Population Prospects of 1.5276 billion. Coefficient variation in caloric, protein and fat of 0.26 based on log-normal distribution from FAO (2014).
2050 Baseline Scenario	 Average per capita meat demand increases to 18.3kg and milk to 110 kilograms based on FAO projections (Alexandratos & Bruinsma, 2012). This comprises 3.5kg of bovine meat, 1.2kg mutton & goat meat; 1kg pigmeat; 12.5kg poultry; and 0.8kg other meats). Assumes increased feed demand is met on the basis of increased crop allocation

	 rather than pasture in line with livestock-specific protein conversion efficiencies from Herrero et al. (2013). Climatic impacts on yields is assumed based on literature review of impacts in the result of a doubling in pre-industrial CO₂ levels. Yield impacts are summarised in table S4. 2050 population figures based on UN Population Prospects of 1.62 billion. Coefficient variation in caloric, protein and fat of 0.26 based on log-normal distribution from FAO (2014).
Scenario 1 (2050): Halving food losses	 Percentage losses from production, postharvest, processing and distribution were halved their values in baseline scenario. Average per capita meat demand increases to 18.3kg and milk to 110 kilograms based on FAO projections (Alexandratos & Bruinsma, 2012). This comprises 3.5kg of bovine meat, 1.2kg mutton & goat meat; 1kg pigmeat; 12.5kg poultry; and 0.8kg other meats). Assumes increased feed demand is met on the basis of increased crop allocation rather than pasture in line with livestock-specific protein conversion efficiencies from Herrero et al. (2013). Climatic impacts on yields is assumed based on literature review of impacts in the result of a doubling in pre-industrial CO₂ levels. Yield impacts are summarised in table S4. 2050 population figures based on UN Population Prospects of 1.62 billion. Coefficient variation in caloric, protein and fat of 0.26 based on log-normal distribution from FAO (2014).
Scenario 2 (2050): achieving 75% attainable yields (AY)	 Yields for all commodities assumed 75% of their India-specific attainable yield value from Mueller et al. (2012). These are combined with climatic impacts on yields is assumed based on literature review of impacts in the result of a doubling in pre-industrial CO₂ levels. Yield impacts are summarised in table S4. Average per capita meat demand increases to 18.3kg and milk to 110 kilograms based on FAO projections (Alexandratos & Bruinsma, 2012). This comprises 3.5kg of bovine meat, 1.2kg mutton & goat meat; 1kg pigmeat; 12.5kg poultry; and 0.8kg other meats). Assumes increased feed demand is met on the basis of increased crop allocation rather than pasture in line with livestock-specific protein conversion efficiencies from Herrero et al. (2013). Loss and waste percentages assumed the same as in baseline scenario. These factors are provided in Table S3. 2050 population figures based on UN Population Prospects of 1.62 billion. Coefficient variation in caloric, protein and fat of 0.26 based on log-normal distribution from FAO (2014).
Scenario 3 (2050): achieving 90% attainable yields (AY)	 Yields for all commodities assumed 90% of their India- specific attainable yield value from Mueller et al. (2012). These are combined with climatic impacts on yields is assumed based on literature review of impacts in the result of a doubling in pre-industrial CO₂ levels. Yield impacts are summarised in table S4. Average per capita meat demand increases to 18.3kg and milk to 110 kilograms based on FAO projections (Alexandratos & Bruinsma, 2012). This comprises 3.5kg of

 bovine meat, 1.2kg mutton & goat meat; 1kg pigmeat; 12.5kg poultry; and 0.8kg other meats). Assumes increased feed demand is met on the basis of increased crop allocation rather than pasture in line with livestock-specific protein conversion efficiencies from Herrero et al. (2013). Loss and waste percentages assumed the same as in baseline scenario. These factors are provided in Table S3. 2050 population figures based on UN Population Prospects of 1.62 billion. Coefficient variation in caloric, protein and fat of 0.26 based on log-normal distribution from FAO (2014).
--