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S1 Appendix: Kinematic equations

Joint angles and center of mass excursion.

The sagittal marker coordinates were used to calculate the joint angles of the foot (θF ),
ankle (θA), knee (θK), hip (θH), lumbar (θL) and neck (θN ) [1]. Based on estimated
segmental CM and mass proportions, weighted sagittal plane CM location was computed
for every frame [1]. A geometrical model relating the CM to the joint configuration
with origin at the toe was expressed through a trigonometric analysis (equation 1):

CMx(li, θi) = m1 ∗ d1 ∗ l1 ∗ cos(θF )+

m2 ∗ l1 ∗ cos(θF ) + d2 ∗ l2 ∗ cos(θF + θA)+

m3 ∗ l1 ∗ cos(θF ) + l2 ∗ cos(θF + θA) + d3 ∗ l3 ∗ cos(θF + θA + θK)+

m4 ∗ l1 ∗ cos(θF ) + l2 ∗ cos(θF + θA) + l3 ∗ cos(θF + θA + θK)+

d4 ∗ l4 ∗ cos(θF + θA + θK + θH)+

m5 ∗ l1 ∗ cos(θF ) + l2 ∗ cos(θF + θA) + l3 ∗ cos(θF + θA + θK)+

l4 ∗ cos(θF + θA + θK + θH) + d5 ∗ l5 ∗ cos(θF + θA + θK + θH + θL)+

m6 ∗ (l1 ∗ cos(θF ) + l2 ∗ cos(θF + θA) + l3 ∗ cos(θF + θA + θK)+

l4 ∗ cos(θF + θA + θK + θH) + l5 ∗ cos(θF + θA + θK + θH + θL)+

d6 ∗ l6 ∗ cos(θF + θA + θK + θH + θL + θN )

(1)

where mi is the ith segment proportional mass expressed as percentage of total
body mass, li is the ith segment’s length, di is the distal distance from the CM
of the ith segment expressed as a percentage of its length, where i = (1, ..., 6) =
(foot, shank, thigh, pelvis, trunk, neck). The joint angles were primarily used to ex-
amine the relation of the elemental variables θi with the performance variable CMx.
Displacement of CMx and joint angle excursion were calculated as the approximate
integral of their trajectories.

Components of joint angle variability.

For the present study a variant of the UCM approach, proposed by Scholz et al. [2], was
used. Here, the measure of multi-segmental CM control is evaluated at each instant in
time to analyze postural responses in different phases during the postural task. For
every recorded frame the variance of the control variables (i.e. joint angles) across the
attempts can be partitioned into two components: parallel and orthogonal to the UCM
(see below). The variance of the performance variable CM orthogonal to the UCM is
usually smaller as compared to the variance parallel to it when standing in response
to surface perturbation [2]. Both components of joint angle variability were computed
to quantify the amount of variability causing unwanted change (task-deviating) and
the amount of variability returning the CM to its steady-state position (task-specific).
The relative ratio of both components was reported to allow group-wise comparison.
Exemplary data is presented in Fig 1.

To obtain the variance of both components, the following steps were applied [2]:

1. Create geometric model (Eq. 1).

2. Compute reference joint-configuration based on mean joint configuration during 1
second prior to perturbation across trials.
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Fig 1. Example data for kinematic analysis. Data of a poorly performing patient
(UI = −.47). The solid vertical lines indicate the time point of platform release. The
gray area represents the active response phase. Top panel shows CM trajectory and
actual platform sway trajectory. Middle panel shows normalized variance within and
perpendicular to pre-perturbation joint configuration space. Lower panel shows relative
ratio of variance.

3. Compute the joint deviation vector (JDV) as the difference between the current
joint-configuration and the reference joint-configuration for each segment θ̄i at
every time-frame of the recording:

JDV =


θF − θ̄F
θA − θ̄A
θK − θ̄K
θH − θ̄H
θL − θ̄L
θN − θ̄N

 (2)

4. Linearise the UCM to relate non-commensurate units with different numbers of
degrees of freedom through the definition of the Jacobian matrix J(θ) and the
computation of its null space around the reference configuration, N(J).

0 = J(θ̄) ∗ εn−d =
[
δCMx

δθF
δCMx

δθA
δCMx

δθK
δCMx

δθH
δCMx

δθL
δCMx

δθN

]
∗ εn−d (3)
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N =

ε1F ε2F ε3F ε4F ε5F
...

...
...

...
...

ε1N ε2N ε3N ε4N ε5N

 (4)

where εn−d are the basis vectors of the null space (n is the number of elemental
variables and d is the number of dimensions of the performance variable) repre-
senting the linear subspace of all joint-configurations that leave the CMx position
unchanged.

5. Decomposition of the JDV projection into the null-space (θ|| and into its orthogonal
space θ⊥:

θ|| =

n−d∑
i=1

(
N(J))Ti · JDV

)
N(J)i (5)

θ⊥ = JDV − θ|| (6)

The computed scalar values represent the length of projection to quantify the
consistency of the instantaneous joint configuration with the steady-state configu-
ration.

6. Calculate variance normalised to the number of degrees of freedom (n− d) and
trial length (N):

σ2
|| =

∑N
i=1 θ

2
||N

(n− d)N
(7)

σ2
⊥ =

∑N
i=1 θ

2
||N

dN
(8)

7. Calculate relative variance as UCM-index (UI) with values ranging from -1 to
1 [3]:

UI =
σ2
|| − σ2

⊥

σ2
|| + σ2

⊥
(9)
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