S1 Appendix Effect of the phase interaction between left and right on the phase resetting

In this appendix, we show how assumptions A6 and 7 influence sensory feedback by phase resetting in the phase dynamics (6).

From assumption A7 $(\tau=0)$, the phase dynamics for the left and right legs becomes

$$
\begin{gather*}
\dot{\phi}_{r}=\omega-k_{\mathrm{c}} \sin \left(\phi_{r}-\phi_{l}-\pi\right)+k_{\mathrm{f}}^{r} \\
\dot{\phi}_{l}=\omega-k_{\mathrm{c}} \sin \left(\phi_{l}-\phi_{r}-\pi\right)+k_{\mathrm{f}}^{l}, \tag{S1.1}
\end{gather*}
$$

where $(r, l)=\{(1,4),(2,5),(3,6)\}$. When phase resetting does not occur $\left(k_{\mathrm{f}}^{r}=k_{\mathrm{f}}^{l}=0\right)$, these equations yield

$$
\begin{equation*}
\frac{d}{d t}\left(\phi_{r}-\phi_{l}\right)=-2 k_{\mathrm{c}} \sin \left(\phi_{r}-\phi_{l}-\pi\right) \tag{S1.2}
\end{equation*}
$$

Then, the relative phase $\phi_{r}-\phi_{l}$ is given by the first order approximation about $\phi_{r}-\phi_{l}=\pi$ as follows:

$$
\begin{equation*}
\phi_{r}(t)-\phi_{l}(t)=\left(\phi_{r}\left(t_{\mathrm{o}}\right)-\phi_{l}\left(t_{\mathrm{o}}\right)-\pi\right) e^{-2 k_{\mathrm{c}}\left(t-t_{\mathrm{o}}\right)}+\pi . \tag{S1.3}
\end{equation*}
$$

We suppose that phase resetting occurs for ϕ_{r} at $t=t_{\mathrm{o}}$ and that $\phi_{r}\left(t_{\mathrm{o}}^{-}\right)=2 \pi-\Delta$ and $\phi_{l}\left(t_{\mathrm{o}}^{-}\right)=\pi-\Delta$ from the assumption A6, where $t=t_{\mathrm{o}}^{-}$is the time immediately before $t=t_{\mathrm{o}}$ and $\Delta \ll 1$. Then, phase resetting yields $\phi_{r}\left(t_{\mathrm{o}}^{+}\right)=0$ and $\phi_{l}\left(t_{\mathrm{o}}^{+}\right)=\pi-\Delta$, where $t=t_{\mathrm{o}}^{+}$is the time immediately after $t=t_{\mathrm{o}}$ and Δ corresponds to the phase reset value. Because $\phi_{r}\left(t_{\mathrm{o}}^{+}\right)-\phi_{l}\left(t_{\mathrm{o}}^{+}\right)=\Delta+\pi \in[0,2 \pi)$ and $\Delta \ll 1$, the relative phase $\phi_{r}(t)-\phi_{l}(t)$ after the phase resetting is given using (S1.3) by

$$
\begin{equation*}
\phi_{r}(t)-\phi_{l}(t)=\Delta e^{-2 k_{\mathrm{c}}\left(t-t_{\mathrm{o}}\right)}+\pi, \quad t>t_{\mathrm{o}} . \tag{S1.4}
\end{equation*}
$$

Then, substituting (S1.4) for (S1.1), the phase dynamics of ϕ_{r} are given by

$$
\begin{equation*}
\dot{\phi}_{r}=\omega-k_{\mathrm{c}} \sin \left(\Delta e^{-2 k_{\mathrm{c}}\left(t-t_{\mathrm{o}}\right)}\right)+k_{\mathrm{f}}^{r}, \quad t>t_{\mathrm{o}} . \tag{S1.5}
\end{equation*}
$$

Until the next phase resetting occurs, ϕ_{r} can be written as a first order approximation of Δ as follows:

$$
\begin{equation*}
\phi_{r}=\omega\left(t-t_{\mathrm{o}}\right)+\frac{1}{2} \Delta e^{-2 k_{\mathrm{c}}\left(t-t_{\mathrm{o}}\right)}-\frac{1}{2} \Delta, \quad t>t_{\mathrm{o}} . \tag{S1.6}
\end{equation*}
$$

After a sufficient duration $\left(\gg 1 / k_{c}\right)$ after phase resetting, ϕ_{r} becomes $\omega\left(t-t_{0}\right)-\frac{1}{2} \Delta$. This means that assumptions A6 and A7 reduce the phase reset value from Δ to $\frac{1}{2} \Delta$. Therefore, we used the coefficient $1 / 2$ for the phase resetting term k_{f} in (21).

