S1 Appendix Effect of the phase interaction between left and right on the phase resetting

In this appendix, we show how assumptions A6 and 7 influence sensory feedback by phase resetting in the phase dynamics (6).

From assumption A7 ($\tau = 0$), the phase dynamics for the left and right legs becomes

$$\begin{aligned} \phi_r &= \omega - k_c \sin(\phi_r - \phi_l - \pi) + k_f^r, \\ \dot{\phi}_l &= \omega - k_c \sin(\phi_l - \phi_r - \pi) + k_f^l, \end{aligned} \tag{S1.1}$$

where $(r, l) = \{(1, 4), (2, 5), (3, 6)\}$. When phase resetting does not occur $(k_{\rm f}^r = k_{\rm f}^l = 0)$, these equations yield

$$\frac{d}{dt}\left(\phi_r - \phi_l\right) = -2k_c \sin(\phi_r - \phi_l - \pi).$$
(S1.2)

Then, the relative phase $\phi_r - \phi_l$ is given by the first order approximation about $\phi_r - \phi_l = \pi$ as follows:

$$\phi_r(t) - \phi_l(t) = (\phi_r(t_o) - \phi_l(t_o) - \pi) e^{-2k_c(t - t_o)} + \pi.$$
(S1.3)

We suppose that phase resetting occurs for ϕ_r at $t = t_o$ and that $\phi_r(t_o^-) = 2\pi - \Delta$ and $\phi_l(t_o^-) = \pi - \Delta$ from the assumption A6, where $t = t_o^-$ is the time immediately before $t = t_o$ and $\Delta \ll 1$. Then, phase resetting yields $\phi_r(t_o^+) = 0$ and $\phi_l(t_o^+) = \pi - \Delta$, where $t = t_o^+$ is the time immediately after $t = t_o$ and Δ corresponds to the phase reset value. Because $\phi_r(t_o^+) - \phi_l(t_o^+) = \Delta + \pi \in [0, 2\pi)$ and $\Delta \ll 1$, the relative phase $\phi_r(t) - \phi_l(t)$ after the phase resetting is given using (S1.3) by

$$\phi_r(t) - \phi_l(t) = \Delta e^{-2k_c(t-t_o)} + \pi, \quad t > t_o.$$
(S1.4)

Then, substituting (S1.4) for (S1.1), the phase dynamics of ϕ_r are given by

$$\dot{\phi}_r = \omega - k_{\rm c} \sin(\Delta e^{-2k_{\rm c}(t-t_{\rm o})}) + k_{\rm f}^r, \quad t > t_{\rm o}.$$
(S1.5)

Until the next phase resetting occurs, ϕ_r can be written as a first order approximation of Δ as follows:

$$\phi_r = \omega(t - t_{\rm o}) + \frac{1}{2}\Delta e^{-2k_{\rm c}(t - t_{\rm o})} - \frac{1}{2}\Delta, \quad t > t_{\rm o}.$$
(S1.6)

After a sufficient duration ($\gg 1/k_c$) after phase resetting, ϕ_r becomes $\omega(t - t_o) - \frac{1}{2}\Delta$. This means that assumptions A6 and A7 reduce the phase reset value from Δ to $\frac{1}{2}\Delta$. Therefore, we used the coefficient 1/2 for the phase resetting term k_f in (21).