Fuzzy-based propagation of prior knowledge to improve large-scale image analysis pipelines

Johannes Stegmaier^{1*}, Ralf Mikut¹

1 Institute for Applied Computer Science, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

¤Current Address: Institute for Applied Computer Science, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

* johannes.stegmaier@kit.edu

S3 Table: Abbreviations, parameterizations and descriptions of the investigated seed detection algorithms.

Method	Parameters	Description
LoGSM	$\sigma_{\min} = 4, \ \sigma_{\max} = 8,$ $\sigma_{\text{step}} = 1, \ t_{\text{wmi}} = 0.0025$	Seed detection in the LoG scale space maximum projection with a manually adjusted window mean intensity thresh- old $(t_{\rm wmi})$ and a strict maximum detec- tion.
LoGNSM	$\sigma_{\min} = 4, \ \sigma_{\max} = 8,$ $\sigma_{\text{step}} = 1, \ t_{\text{wmi}} = 0.0025$	Seed detection in the LoG scale space maximum projection with a manually adjusted window mean intensity thresh- old $(t_{\rm wmi})$ and a non-strict maximum detection.
LoGNSM+F	$\begin{split} \sigma_{\rm min} &= 4, \ \sigma_{\rm max} &= 8, \\ \sigma_{\rm step} &= 1, \ t_{\rm wmi} = 0.0025, \\ t_{\rm dbc} &= 5 \end{split}$	Same detection as LoGNSM but with additional fusion (F) of redundant de- tections using a hierarchical clustering approach with a distance-based cutoff value $(t_{\rm dbc})$.
LoGNSM+F+1	$\sigma_{\min} = 4, \sigma_{\max} = 8, \\ \sigma_{\text{step}} = 1, t_{\text{dbc}} = 5, \\ \boldsymbol{\theta}_{\text{wmi}} = (0.0025, 0.0025, \infty, \alpha), \\ \boldsymbol{\theta}_{\text{smi}} = (0.0007, 0.0007, \infty, \alpha), \\ \boldsymbol{\theta}_{\text{zpos}} = (50, 250, \infty, \infty), \\ \alpha_{11} = 0.0001, \beta_{11} = \alpha_{11}$	Same detection as LoGNSM but with uncertainty-based (U) threshold and the fusion of LoGNSM+F. The forward threshold α_{11} is set slightly above zero, such that obvious false positives are re- jected. As no further processing was needed β_{11} was set to α_{11} .