1 Supplementary information

2 ImageJ routine for the acquisition of vGlut/PSD95 clusters

3 Image pre-treatment

Objects detection and analysis were performed after several pre-treatments allowing strong deblurring and denoising to get sharp and noise free details. Deblurring was performed by making a high pass filter from the mean resulting image of two unsharp masks (sigma 3 and 10) [4]. Noise was removed by replacing outlier pixels by the median of the pixels in the surrounding if they deviate from the median by more than a user-defined threshold value. Objects were then brought in a same range of intensity by applying an edge Sobel detection followed by a dilation.

10 Segmentation

11 Segmentation was performed by thresholding with a value optimized for each image, returning 12 structures whose maximum size is n fold the mean size of the objects to analyze. "n" is set by the user 13 according to the sampling during the laser scanning. The sub-segmentation of the aggregates was 14 then performed by using a watershed operation [5]. A final sorting of the segmented objects was performed by using a ratio signal/noise (ratio S/N) threshold, defined as follows: ratio S/N = Max15 object / {Min outline + (0.5 * sd outline values) }. "Max object" is the maximum value got in an 16 object. "Min outline" is the lowest value encounter in the outline of an object, and "sd outline values" 17 18 is the standard deviation calculated from the outline pixels. Selected binary objects were then converted into vector objects (overlays). 19

20 Objects overlapping analysis

Vector objects got on the two channels corresponding to vGlut and PSD95 were submitted to an overlapping analysis into user selections delimiting axonal or dendritic edges. Red (PSD95) and green (vGlut) juxtaposed objects were considered as synaptic elements when their apparent edges overlapped more than 60 pixels (about 0.25µm²). The program can analyze automatically batch of images and returns Excel like statistical tables of results [7].

- 26 References:
- 27 [1] Rasband WS (1997-2013) ImageJ website, U. S. National Institutes of Health, Bethesda,
- 28 Maryland, USA. Available: http://imagejnihgov/ij/ Accessed 2012 August 26.
- 29 [2] Griffa A, Garin N, Sage D (2010) "Comparison of Deconvolution Software in 3D Microscopy., A
- 30 User Point of View" Part I and Part II. GIT Imaging & Microscopy 1: 43–45.
- 31 [3] Vonesch C, Unser M (2008) A fast thresholded landweber algorithm for wavelet- regularized
- 32 multidimensional deconvolution. IEEE Trans Image Process 17: 539–549.
- 33 [4] Ferreira T and Rasband W. (2013) ImageJ documentation, section 29.11.8 available at the
 http://rsb.info.nih.gov/ij/docs/guide/146-29.html#toc-Subsection-29.11.
- 35 [5] Ferreira T and Rasband W. (2013) ImageJ documentation, section 29.4 available at the
 http://rsb.info.nih.gov/ij/docs/guide/146-29.html#toc-Subsection-29.4.
- 37 [6] Carpentier G. (2013). Sort Selections in Overlays available at the
 38 http://rsb.info.nih.gov/ij/macros/Sort-Selections-in-Overlays.txt.
- 39 [7] Carpentier G. (2007). CustomTabStatFromResults available at the
 40 http://rsb.info.nih.gov/ij/macros/CustomTabStatFromResults.txt.

41 ImageJ routine for the analysis of dendritic morphology

42 Automated analysis of the neuron consists in three steps; detection of the soma edges, detection of the 43 binary skeleton fitting to the neuritic tree and analysis of this tree by a customized version of the 44 « Angiogenesis Analyzer » [1], a tool programmed for the ImageJ software [2]. Soma detection and 45 binary skeletonizing can be summarized as follows: noise and background of initial image were removed respectively by Gaussian convolution with a sigma of 1.5 and a 2D so called « rolling ball 46 47 filter » with a radius of 10 pixels. Thresholding by the « Otsu » [3] method returns the segmented 48 image « A ». The soma detection was performed by using a FFT band pass filter on the initial image, 49 using a size filtering in order of the mean diameter of the soma. A thresholding according to the 50 « MaxEntropy » method [4] was then performed after background removal by subtracting the mean 51 value of the image histogram. Edge of objects whose size corresponds to a soma was drawn and

emptied in the binary Image « A ». Skeletonizing the result of this step gave the binary skeleton then
submitted to the modified « Angiogenesis Analyzer » for quantification of the tree: briefly, a first step
deduced junctions, corresponding to bifurcation, branches (elements limited by one extremity and one
junction) and segments (elements limited by two junctions), from the skeleton (Figures S4E and S4F).
Pruning of this modelled tree resulted in a tree in which every branches was removed. Junctions and
segments detected in this residual tree are called master segments and master junctions (Figures S4E
and S4G). Measurement of these modelled structures allowed quantification of the neuronal structure.

59 References:

60 [1] Carpentier, G., 2012. Angiogenesis analyzer for ImageJ available at on the ImageJ website at the
61 http://rsb.info.nih.gov/ij/macros/toolsets/Angiogenesis%20Analyzer.txt.

62 [2] Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,
63 http://imagej.nih.gov/ij/, 1997-2015.

- 64 [3] Otsu, N (1979), "A threshold selection method from gray-level histograms", IEEE Trans. Sys.,
 65 Man., Cyber. 9: 62-66, doi:10.1109/TSMC.1979.4310076
- [4] Kapur, JN; Sahoo, PK & Wong, ACK (1985), "A New Method for Gray-Level Picture
 Thresholding Using the Entropy of the Histogram", Graphical Models and Image Processing 29(3):
 273-285
- 69

70

- 71
- 72
- 73

74

75

⁷⁶ Linearity of the RT-qPCR primers (for Fig 1 and S1 Fig)

98 Multiple synaptic contacts (for Fig 4)

139	
140	Fig3B: Kruskal-Wallis test, **** p< 0.0001. Dunn's Multiple Comparison Test: cont vs En1, ****
141	p< 0.0001, cont vs En2, *p=.0.0166.
142	
143	Fig3C: Kruskal-Wallis test, *** p=0.0001. Dunn's Multiple Comparison Test: cont vs En1,
144	***p=0.0007; En1 vs En1SR, **p=0.0014
145	
146	Fig3D: Branched spines, t-test (one-tailed), cont vs En1, *** p=0.0004.
147	
148	Fig3E: Stubby spines, t-test (one-tailed), cont vs En, **** p< 0.0001; Mushroom spines, Mann
149	Whitney test, cont vs En, p=0.1874; Thin spines, t-test (one-tailed), cont vs En, *** p=0.0002.
150	
151	Fig3F: Kolmogorov-Smirnov test on two samples (<u>http://www.physics.csbsju.edu/stats/KS-test.html</u>):
152	stubby spine neck (KS test, D=0.159, p<0.0001), thin spine lengh (KS test, D=0.06, p=0.054), and
153	mushroom spine volume (KS test, D=0.119, p=0.01).
154	
155	Fig4C: Kruskal-Wallis test, ** p= 0.0099. Dunn's Multiple Comparison Test: cont1-Vglut vs En2-
156	Vglut, *p=0.0368 ; cont2-Vglut vs En2-Vglut, *p=0.0158 ; cont1-PSD vs En2-PSD, *p=0.0432 ;
157	cont2-PSD vs En2-PSD, **p=0.0052.
158	
159	Fig4D: Kruskal-Wallis test, *** p= 0.0001. Dunn's Multiple Comparison Test: cont1-Vglut vs En2-
160	Vglut, ***p=0.0009 ; En1-Vglut vs En2-Vglut, **p=0.0015 ; cont2-Vglut vs En2-Vglut, **p=0.0052 ;
161	cont1-PSD vs En2-PSD, **p=0.0012; En1-PSD vs En2-PSD, ***p=0.0004; cont2-PSD vs En2-
162	PSD, **p=0.0082.
163	
164	
165	Fig4E: Kruskal-Wallis test, *** p= 0.0001. Dunn's Multiple Comparison Test: cont1-over vs En2-
165 166	Fig4E : Kruskal-Wallis test, *** p= 0.0001. Dunn's Multiple Comparison Test: cont1-over vs En2-over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068.
165 166 167	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068.
165 166 167 168	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A : Kolmogorov-Smirnov test on two samples (<u>http://www.physics.csbsju.edu/stats/KS-test.html</u>):
165 166 167 168 169	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068.
165 166 167 168 169 170	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A : Kolmogorov-Smirnov test on two samples (<u>http://www.physics.csbsju.edu/stats/KS-test.html</u>): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055.
165 166 167 168 169 170 171	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A : Kolmogorov-Smirnov test on two samples (<u>http://www.physics.csbsju.edu/stats/KS-test.html</u>): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B : Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-
165 166 167 168 169 170 171 172	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A : Kolmogorov-Smirnov test on two samples (<u>http://www.physics.csbsju.edu/stats/KS-test.html</u>): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055.
165 166 167 168 169 170 171 172 173	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A : Kolmogorov-Smirnov test on two samples (<u>http://www.physics.csbsju.edu/stats/KS-test.html</u>): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B : Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568.
165 166 167 168 169 170 171 172 173 174	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A : Kolmogorov-Smirnov test on two samples (<u>http://www.physics.csbsju.edu/stats/KS-test.html</u>): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B : Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-
165 166 167 168 169 170 171 172 173 174 175	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A : Kolmogorov-Smirnov test on two samples (<u>http://www.physics.csbsju.edu/stats/KS-test.html</u>): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B : Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C : Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208.
165 166 167 168 169 170 171 172 173 174 175 176	over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A : Kolmogorov-Smirnov test on two samples (<u>http://www.physics.csbsju.edu/stats/KS-test.html</u>): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B : Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568.
165 166 167 168 169 170 171 172 173 174 175 176 177	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047.
165 166 167 168 169 170 171 172 173 174 175 176 177 178	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1,
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1, **p=0.0026 ; cont vs En2, *p=0.0316 ; En1 vs En1+rapa, **p=0.0035 ; En2 vs En2+rapa,
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1,
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1, **p=0.0026; cont vs En2, *p=0.0316; En1 vs En1+rapa, **p=0.0035; En2 vs En2+rapa, ***p=0.0003.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1, **p=0.0026; cont vs En2, *p=0.0316; En1 vs En1+rapa, **p=0.0035; En2 vs En2+rapa, ***p=0.003. Fig6D: Kruskal-Wallis test, **** p< 0.0001. Dunn's Multiple Comparison Test: cont vs anisomycin,
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1, **p=0.0026; cont vs En2, *p=0.0316; En1 vs En1+rapa, **p=0.0035; En2 vs En2+rapa, ***p=0.0003.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1, **p=0.0026; cont vs En2, *p=0.0316; En1 vs En1+rapa, **p=0.0035; En2 vs En2+rapa, ***p=0.0003. Fig6D: Kruskal-Wallis test, **** p< 0.0001. Dunn's Multiple Comparison Test: cont vs anisomycin, **** p< 0.0001; cont vs puromycin, **** p< 0.0001; anisomycin vs puromycin, **p=0.0011.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1, ***p=0.0003. Fig6D: Kruskal-Wallis test, **** p< 0.0001. Dunn's Multiple Comparison Test: cont vs anisomycin, **** p< 0.0001; cont vs puromycin, **** p< 0.0001; anisomycin vs puromycin, ***p=0.0011. Fig6E: One-way ANOVA test, **** p< 0.0001. Turkey's Multiple Comparison Test: cont vs anisomycin, **** p< 0.0001; cont vs puromycin, **** p< 0.0001; anisomycin vs puromycin, ***p=0.0011.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1, **p=0.0003. Fig6D: Kruskal-Wallis test, **** p< 0.0001. Dunn's Multiple Comparison Test: cont vs anisomycin, **** p< 0.0001; cont vs puromycin, **** p< 0.0001. Turkey's Multiple Comparison Test: cont vs en1, **** p<0.0001; cont vs puromycin, **** p< 0.0001. Turkey's Multiple Comparison Test: cont vs en1, **** p<0.0001; cont vs puromycin, **** p< 0.0001; anisomycin vs puromycin, **** p=0.0011.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 182 183 184 185 186 187	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1, ***p=0.0003. Fig6D: Kruskal-Wallis test, **** p< 0.0001. Dunn's Multiple Comparison Test: cont vs anisomycin, **** p< 0.0001; cont vs puromycin, **** p< 0.0001; anisomycin vs puromycin, ***p=0.0011. Fig6E: One-way ANOVA test, **** p< 0.0001. Turkey's Multiple Comparison Test: cont vs anisomycin, **** p< 0.0001; cont vs puromycin, **** p< 0.0001; anisomycin vs puromycin, ***p=0.0011.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186	 over, **p=0.0012; En1-over vs En2-over, ***p=0.0007; cont2-over vs En2-over, **p=0.0068. Fig5A: Kolmogorov-Smirnov test on two samples (http://www.physics.csbsju.edu/stats/KS-test.html): cont-PSD vs En1-PSD, D= 0.072, p=0.178; cont-Vglut vs En1-Vglut, D=0.084, p=0.055. Fig5B: Kolmogorov-Smirnov test on two samples: cont-PSD vs En2-PSD, D= 0.183, p<0.0001; cont-Vglut vs En2-Vglut, D=0.055, p=0.568. Fig5C: Kolmogorov-Smirnov test on two samples: cont-overlap vs En1-overlap, D=0.074, p=0.208. Fig5D: Kolmogorov-Smirnov test on two samples: cont-overlap vs En2-overlap, D=0.112, p=0.047. Fig6C: One-way ANOVA test, **** p< 0.0001. Tukey's Multiple Comparison Test: cont vs En1, **p=0.0003. Fig6D: Kruskal-Wallis test, **** p< 0.0001. Dunn's Multiple Comparison Test: cont vs anisomycin, **** p< 0.0001; cont vs puromycin, **** p< 0.0001. Turkey's Multiple Comparison Test: cont vs en1, **** p<0.0001; cont vs puromycin, **** p< 0.0001. Turkey's Multiple Comparison Test: cont vs en1, **** p<0.0001; cont vs puromycin, **** p< 0.0001; anisomycin vs puromycin, **** p=0.0011.

190	
191 192	FigS1B : Kruskal-Wallis test, * p=0.0193. Dunn's Multiple Comparison Test: E16 vs P5, *p=0.0183.
193 194	FigS2A : Kruskal-Wallis test, **** p< 0.0001. Dunn's Multiple Comparison Test: no treatment (NT) vs En1SR, *p=0.0321; NT vs En1, **p=0.0024; NT vs En2, **** p< 0.0001; En2SR vs En2,
195 196	**p=0.0061.
197	FigS2B: One-way ANOVA test, **** p< 0.0001. Turkey's Multiple Comparison Test: no treatment
198	(NT) vs En1SR, *p=0.0132; NT vs En1, ***p=0.0005; NT vs En2, **** p< 0.0001; En2SR vs En1,
199 200	*p=0.0183 ; En2SR vs En2, ***p=0.0002.
200	FigS2C : Kruskal-Wallis test, **** p< 0.0001. Dunn's Multiple Comparison Test: no treatment (NT)
202 203	vs En1, **p=0.0069; NT vs En2, **** p< 0.0001; En2SR vs En2, **p=0.0012.
204	FigS2D: One-way ANOVA test, **** p< 0.0001. Turkey's Multiple Comparison Test: no treatment
205	(NT) vs En2, **** p< 0.0001; En2SR vs En2, **** p< 0.0001.
206	
207	FigS2E : One-way ANOVA test, **** p< 0.0001. Turkey's Multiple Comparison Test: no treatment
208 209	(NT) vs En2, **** p< 0.0001; En2SR vs En2, **** p< 0.0001.
210	FigS2F: One-way ANOVA test, **** p< 0.0001. Turkey's Multiple Comparison Test: no treatment
211	(NT) vs En2, *** p= 0.0001; En2SR vs En2, **** p< 0.0001.
212	
213	FigS3B: Apical spine density, t-test, ****p<0.0001.
214	
215	FigS3C : Basal spine density, Mann-Whitney test, *p=0.0164.
216	
217 218	FigS4 : Kruskal-Wallis test, * p=0.02. Dunn's Multiple Comparison Test: cont vs En1, *p=0.0117
210	

219 Detailed dataset

220 Dataset are available at <u>https://figshare.com/s/06a7d2a6d5db699dfaf1</u>