| Ferrous sulfate supplementation studies | | | | | | | | | | | | | |---|--|---|--|---|---|--|--|--|-------|-----------------------------|--|--| | Study | Zimmermann et al [1] | Jaeggi et al [2] | Krebs et al [3] | Dostal et al [4]. | Tompkins et al [5] | Benoni et al [6] | Lee et al [7] | | Curre | nt study | study | | | Subject/animal | African children (n=139).
54% of children were
infected with helminths, | Kenyan infants
(n=115). Malaria-
endemic area, 67.3% | Breast-fed term
infants (n=55).
27% had low | South African
children (n=73), from
households with | Male Swiss-Webster mice | Sprague Dawley rats | Weaning piglets
(n=144) | Normal rat pups | | Growth restricted rat pups | | | | | live in remote rural area
with poor sanitation and
low quality diet | were anaemic,
25.5%, 99% breast-
fed, 80% already
been introduced to
complementary food | ferritin level, 36%
had mild anemia. | access to clean tap
water, malaria-free
environment, only
mildly Fe deficient. | | | | PD 20 | PD 56 | PD 20 | PD 56 | | | Iron form | Iron-fortified biscuit, 8.8
mg Fe/d from
supplementation. 12 mg
Fe/d from daily meal. | Micronutrient
powder containing
NaFeEDTA, ferrous
fumarate, daily | Pureed meats
compare to
organic, whole
grain iron-only
fortified infant
cereal. | 50 mg Fe as ferrous
sulfate for 4 d/week | 121 mg or 1.59 g Ferric
chloride/kg compared
to the control group
supplemented with
2mg iron/kg from base
diet with NaCl | Ferrous sulfate, 10
and 30 mg iron/kg | 50, 100 or 250
mg iron as
ferrous sulfate
/kg | Daily supplementation of medium (30 μg) or High (150 μg) iron as ferrous sulfate | | | | | | Age | 6-13 y old | 6 month old | 5 months old | 6-11 y old | 32 d old | | birth to 28 days | Weaning (from birth to age of 56 days) | | | | | | Duration | 6 months | 4 months | 4-5 months | 38 weeks | 8 weeks | 2 or 4 weeks | 28 days | From day 2 to day 20 after birth | | | | | | Gastrointestinal illness | Diarrhea, NC. Constipation, reduced, vomiting, increased. | Diarrhea, increased.
Malaria, NC. | | Diarrhea, stomach pain, vomiting, NC. | | | Diarrhea,
increased | | | | | | | Method | Temporal temperature
gradient gel
electrophoresis and qPCR | 16S pyrosequencing,
qPCR | 16S
pyrosequencing | qPCR | Culture-based | Culture-based | Culture-based | Illumina 16S sequencing | | | | | | Firmicutes | | Increased | | NC | | | | NC | NC | NC | NC | | | Enterococcus | | | | | Reduced | Reduced | | NC | NC | NC | NC | | | Bacilli | | | Reduced | | | | | NC | NC | NC | NC | | | Lactobacillus | Reduced | | Reduced | NC | Reduced | Increased after 2
weeks | NC | NC | NC | NC | Increased in
medium Fe | | | Clostridium | | Increased | Clostridium Cluter
XIVa decreased | Clostridium Cluster
IV and Eubacterium
hallii,, NC | | Increased | | NC | NC | Increased in
High Fe (1) | NC | | | Peptostreptococcus | | | | | | Reduced at 4
weeks, increased
after 2 weeks. | | ND | ND | ND | ND | | | Bacteroidetes | | | Increased | NC | | Reduced after 4
weeks, increased
after 2 weeks | | NC | NC | NC | Reduced in
medium Fe | | | Actinobacteria | | | Reduced | | | | | NC | NC | NC | NC | | | Bifidobacterium | NC | Reduced | Reduced | NC | | | NC | NC | NC | NC | NC | | | Rothia | | | Reduced | | | | | NC | NC | NC | Reduced in
both median
and High Fe | | | Proteobacteria | | | NC | | | | | Increased in
medium Fe (2) | NC | NC | NC | | | Enterobacteriaceae | Increased | | Decrease (10.3%
vs. 23.1%) | NC | | | | NC | NC | NC | NC | | | Shigella | Increased | Increased | NC | | | | Coliform
bacteria, NC | Increased in
medium Fe (3) | NC | NC | NC | | | E.coli | | | NC | | | Increased | | NC | NC | NC | NC | | * One-way ANOVA followed by HSD turkey post-hoc test. NC = No change. ND = Not detected. (1) In normal diet, Clostridium from family Clostridiaceae is significantly increased in high Fe group compared to the control. This does not include Clostridium from Lachnospiraceae and Erysipelotrichaceae family. (2) p=0.07 using pairwised post-hoc Tukey test. (3) p=0.06 using pairwised post-hoc Tukey test. [1] Zimmermann MB, Chassard C, Rohner F, N'Goran E K, Nindjin C, Dostal A, et al. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire. The American journal of clinical nutrition. 2010;92:1406-15. [2] Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64:731-42. [3] Krebs NF, Sherlock LG, Westcott J, Culbertson D, Hambidge KM, Feazel LM, et al. Effects of different complementary feeding regimens on iron status and enteric microbiota in breastfed infants. J Pediatr. 2013;163:416-23. [4] Dostal A, Baumgartner J, Rissen N, Chassard C, Smuts CM, Zimmermann MB, et al. Effects of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: a randomised, placebo-controlled intervention trial in South Br J Nutr. 2014;112:547-56. [5] Tompkins GR, O'Dell NL, Bryson IT, Pennington CB. The effects of dietary ferric iron and iron deprivation on the bacterial composition of the mouse intestine. Curr Microbiol. 2001;43:38-42. [6] Benonii G, Cuzzolin L, Zambreri D, Donini M, Del Soldato P, Caramazza I. Gastrointestinal effects of single and repeated doses of ferrous sulphate in rats. Pharmacol Res. 1993;27:73-80. [7] Lee SH, Shinde P, Choi J, Park M, Ohh S, Kwon IK, et al. Effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence in weanling pigs. Biol Trace Elem Res. 2008;126 Suppl 1:557-68.