
S1 Appendix: Markov chain Monte Carlo (MCMC)1

algorithms1
2

In this supplement we describe the MCMC algorithms that were used to compute the3

Markov chains needed for estimating summaries of the posterior distribution of each model’s4

parameters. We use bracket notation (Gelfand and Smith, 1990) to specify probability den-5

sity functions; thus, [x, y] denotes the joint density of random variables X and Y , [x|y] de-6

notes the conditional density of X given Y = y, and [x] denotes the unconditional (marginal)7

density of X.8

Model of detection frequencies and detection times9

We used a MCMC algorithm to generate a Markov chain whose stationary distribution

is equivalent to a posterior with the following unnormalized density function:

[θ, n0, s1, . . . , sn|y(1:n), t(1:n), n] ∝ [θ][y(1:n), t(1:n), n, n0, s1, . . . , sn|θ]

where θ = (β′,α′, σ, ξ)′ denotes a vector of unknown parameters assumed to have mutually10

independent prior distributions (that is, [θ] = [β][α][σ][ξ]). The posterior density function11

conditions on n, the number of distinct individuals observed during the sampling period, and12

on the frequencies and times of detection (y(1:n) and t(1:n), respectively) of these individuals.13

We developed a MCMC algorithm that combined two sampling algorithms (delayed-14

rejection, Metropolis-Hastings (Tierney and Mira, 1999; Mira, 2001) and adaptive, Metropo-15

lis (Rosenthal, 2011)) to draw random samples from full conditional distributions. This ap-16

proach was more complex to implement than simple Metropolis-Hastings, but it produced17

considerably more efficient Markov chains that mixed well and appeared to converge more18

1This draft manuscript is distributed solely for purposes of scientific peer review. Its content is deliberative
and predecisional, so it must not be disclosed or released by reviewers. Because the manuscript has not yet
been approved for publication by the U.S. Geological Survey (USGS), it does not represent any official USGS
finding or policy.
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quickly. Each of the following full conditional distributions was sampled in one iteration of19

our MCMC algorithm:20

1. The full conditional for n0 has a familiar form: n0|· ∼ Poisson(π0 Λ(B)), where21

π0 Λ(B) =

∫
B

λ(s)
K∏
k=1

exp[−Φ(Tk, s,xk)] ds

(The integral required to compute π0 Λ(B) cannot be evaluated in closed form. In22

practice this integral is approximated as a Riemann sum by partitioning B into a23

sufficiently fine grid.) The full conditional for n0 is the conditional posterior for the24

number of activity centers of animals that were present in region B but not detected25

during the period of sampling. In our model of the tiger data, Φ(Tk, s,xk) can be26

expressed in closed form as follows:27

Φ(Tk, s,xk) = (Tk,n + Tk,d exp(ξ)) exp(α′wk − ||s− xk||2/(2σ2))

where Tk,n and Tk,d denote the periods of operation of camera k during nighttime and28

daytime, respectively and where Tk = Tk,n + Tk,d.29

2. The full conditional for si has unnormalized density

[si|·] = λ(si)
K∏
k=1

exp(−Φ(Tk, si,xk))

yik∏
j=1

φ(tikj, si,xk)

where φ(tikj, si,xk) = exp[α′wk + ξ z(tikj) − ||si − xk||2/(2σ2)]. To sample this full30

conditional, we used a delayed-rejection Metropolis-Hastings algorithm treating [si|·]31

as the target density. In particular, first we used a bivariate normal distribution as a32

proposal and selected its parameters to approximate the target distribution. Specif-33

ically, let f(si) = log([si|·]). We assigned the mean of the proposal distribution to34

equal ŝi, the value of si that maximized f(si). This maximimization was done numer-35

2



ically using an analytical gradient g(si) and hessian H(si). The covariance matrix of36

the proposal distribution was computed by inverting the negative of the hessian matrix37

[−H(ŝi)]
−1. If the candidate of this proposal distribution was rejected, we computed a38

second candidate using a bivariate normal distribution with mean equal to the current39

value of si and with a diagonal covariance matrix σ2
si
I (where I is an identity matrix40

and σsi is a known scale parameter). In other words, we used a random-walk Metropolis41

algorithm to generate the second candidate. The acceptance probability of the second42

candidate was computed to ensure that the Markov chain remained reversible relative43

to its stationary distribution (Mira, 2001). In cases where the first proposal’s mean or44

covariance matrix could not be computed due to failed optimization, we simply applied45

the random-walk Metropolis algorithm with the bivariate normal proposal described46

earlier. The scale parameter σsi of the random-walk proposal distribution was tuned47

adaptively – that is, by incrementing or decrementing the proposal distribution’s vari-48

ance depending on whether or not the acceptance rate in each batch of 50 iterations of49

the MCMC algorithm exceeded a target rate of 0.234 (Rosenthal, 2011, Sections 4.3.350

and 4.3.4). We reduced the absolute value of these adjustments in proportion to the51

inverse square root of the number of batches to ensure that the diminishing-adaptation52

condition required for convergence (in distribution) of the Markov chain was satisfied53

(Roberts and Rosenthal, 2007).54

3. The full conditional for β has unnormalized density

[β|·] = [β] exp(−Λ(B)) (π0 Λ(B))n0

n∏
i=1

λ(si)

where [β] denotes the density function of a multivariate normal prior with mean 055

and diagonal covariance matrix σβI. The scale parameter σβ was assigned a value of56

10 to specify an arbitrarily high level of prior uncertainty in the magnitude of β. To57

sample the full conditional of β, we used the approach described earlier (see item #2)58
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where [β|·] is treated as the target density for samplers based on delayed-rejection,59

Metropolis-Hastings and adaptive Metropolis algorithms.60

4. The full conditional for the parameters α, ξ, and σ has unnormalized density

[α, ξ, σ|·] = [α][ξ][σ] (π0 Λ(B))n0

n∏
i=1

K∏
k=1

exp[−Φ(Tk, si,xk)]

yik∏
j=1

φ(tikj, si,xk)

where [α] denotes the density function of a multivariate normal prior with mean 061

and diagonal covariance matrix σαI. The scale parameter σα was assigned a value62

of 10 to specify an arbitrarily high level of prior uncertainty in the magnitude of63

α. Similarly, [ξ] denotes the density function of a normal prior with mean zero and64

relatively high variance (102). A Half-t distribution with ν = 2 degrees of freedom and65

scale parameter s = 10 was used to specify a weakly-informative prior for σ (Gelman,66

2006); [σ] denotes the density function of this prior. To sample the full conditional67

of α, ξ, and σ, we used the approach described earlier (see item #2) where [α, ξ, σ|·]68

is treated as the target density for samplers based on delayed-rejection, Metropolis-69

Hastings and adaptive Metropolis algorithms.70

Restricted model of detection frequencies71

We used a MCMC algorithm to generate a Markov chain whose stationary distribution

is equivalent to a posterior with the following unnormalized density function:

[θ, n0, s1, . . . , sn|y(1:n), n] ∝ [θ][y(1:n), n, n0, s1, . . . , sn|θ]

where θ = (β′,α′, σ)′ denotes a vector of unknown parameters assumed to have mutually72

independent prior distributions (that is, [θ] = [β][α][σ]). The posterior density function73

conditions on n, the number of distinct individuals observed during the sampling period,74

and on the frequencies of detection (y(1:n)) of these individuals.75
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As with the model of detection frequencies and detection times, we developed a MCMC76

algorithm that combined two sampling algorithms (delayed-rejection, Metropolis-Hastings77

(Tierney and Mira, 1999; Mira, 2001) and adaptive, Metropolis (Rosenthal, 2011)) to draw78

random samples from full conditional distributions. Except for parameter n0, we sampled79

each full conditional using the approach described earlier (see item #2 above) where the full80

conditional density is treated as the target density for samplers based on delayed-rejection,81

Metropolis-Hastings and adaptive Metropolis algorithms. Therefore, for sake of brevity,82

below we simply describe the full conditional distributions sampled in one iteration of our83

MCMC algorithm:84

1. The full conditional for n0 has a familiar form: n0|· ∼ Poisson(π0 Λ(B)), where85

π0 Λ(B) =

∫
B

λ(s)
K∏
k=1

exp[−Φ(Tk, s,xk)] ds

(The integral required to compute π0 Λ(B) cannot be evaluated in closed form. In86

practice this integral is approximated as a Riemann sum by partitioning B into a87

sufficiently fine grid.) The full conditional for n0 is the conditional posterior for the88

number of activity centers of animals that were present in region B but not detected89

during the period of sampling. In this restriced model, Φ(Tk, s,xk) can be expressed90

in closed form as follows:91

Φ(Tk, s,xk) = Tk exp(α′wk − ||s− xk||2/(2σ2))

= Tk φ(s,xk)

2. The full conditional for si has unnormalized density

[si|·] = λ(si)
K∏
k=1

exp[−Tk φ(si,xk)] φ(si,xk)
yik
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where φ(si,xk) = exp[α′wk − ||si − xk||2/(2σ2)].92

3. The full conditional for β has unnormalized density

[β|·] = [β] exp(−Λ(B)) (π0 Λ(B))n0

n∏
i=1

λ(si)

where [β] denotes the density function of a multivariate normal prior with mean 0 and93

diagonal covariance matrix σβI. The scale parameter σβ was assigned a value of 10 to94

specify an arbitrarily high level of prior uncertainty in the magnitude of β.95

4. The full conditional for the parameters α and σ has unnormalized density

[α, σ|·] = [α][σ] (π0 Λ(B))n0

n∏
i=1

K∏
k=1

exp[−Tk φ(si,xk)] φ(si,xk)
yik

where [α] denotes the density function of a multivariate normal prior with mean 096

and diagonal covariance matrix σαI. The scale parameter σα was assigned a value of97

10 to specify an arbitrarily high level of prior uncertainty in the magnitude of α. A98

Half-t distribution with ν = 2 degrees of freedom and scale parameter s = 10 was used99

to specify a weakly-informative prior for σ (Gelman, 2006); [σ] denotes the density100

function of this prior.101

Posterior inference and estimation of Monte Carlo error102

We used M = 2000 iterations of the MCMC algorithm to estimate summaries (means,103

standard deviations, quantiles) of the posterior distribution and other ecologically relevant104

functionals of the Markov chain. The estimates were computed using ergodic averages,105

which are simulation consistent (that is, the averages converge to posterior expectations as106

the number of iterations increases) according to the strong law of large numbers for Markov107

chains (Flegal and Jones, 2011). (The first 500 elements of the Markov chain were discarded108

to exclude initial transients in the Markov chain.) Monte Carlo standard errors of the109
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estimates were computed using the subsampling bootstrap method Flegal and Jones (2010,110

2011) with overlapping batch means of size b
√
Mc.111
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Disclaimers133

The computing program (R Core Team, 2016) needed to implement our MCMC algorithm134

is available in S4 Appendix.2 Any use of trade, firm, or product names is for descriptive135

purposes only and does not imply endorsement by the U.S. Government.136

2This software has been approved for release by the U.S. Geological Survey (USGS). Although the software
has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant
to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S.
Government as to the functionality of the software and related material nor shall the fact of release constitute
any such warranty. Furthermore, the software is released on condition that neither the USGS nor the
U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.
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