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Transfer Entropy

In this section we present the information theoretical tools at the heart of the transfer
entropy measure defined in Eq. (1). Let us consider two time series, X(t) and Y (t), and
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This object is zero if Y (t) contains no information about x
t

and positive otherwise. The
transfer entropy from Y (t) to X(t), denoted by T

Y!X

, is the average over the past
observations of (8):
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It accounts for the information gained about the present value of the time series X(t) by
also considering the l past values of the time series Y (t), in addition to the k past
values of X(t). The time steps scale can be generalized from 1 to a general value �. In

this case we have x

(k)
t
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}. Usually, the computation of TE is done by
setting k = l = 1 for computational reasons; moreover, increasing k may destroy
meaningful information flow, as shown in [44].

The computation of TE from the observed time series requires estimation of the
various probability distributions in Eq. (9). Among the proposed estimation methods is
STE [39], which employs the technique of symbolization. A k�dimensional symbol of
the time series X(t) at time t is defined by ordering the values
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. More details on this protocol are given in the
next section. The symbolic transfer entropy is then defined by
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which directly follows from Eq. (9) once that explicit values are replaced by symbols.
Assuming stationarity, the required probability distributions can be estimated by
computing the occurrences of symbols in the time series, suppressing the effect of noise
and bypassing the fine-tuning of parameters in probability distribution estimation
protocols. Notice that each symbol is drawn from the values of the time series at k time
steps into the past and so that a single symbol contains information from k historic
time steps.

The measure we introduced in Eq. (1) is very similar to STE but rather than dealing
with k-dimensional symbols, it aims to predict k + 1-dimensional symbols from
k-dimensional ones, but with a modest computational cost. The main reason to
introduce this measure has been to gain computational power in predicting symbols of
k + 1 literals; this was particularly important due to the long preprocessing time
required for the type of datasets analyzed. The reason is that for each pair of stocks
there must be a one-to-one correspondence between the respective trading days. Days



when one of the two is not traded are potentially problematic since they may shift the
time index in one of the two and interfere with the causality relations. To deal with this
issue we adopted a practical approach by removing all the non-common days in each
pair of the time series considered. Since the number of disregarded days in each pair of
stocks does not exceed 10 days this may seems a minor difficulty. By the way it requires
a larger pre-processing effort, since we cannot symbolize the time series once and for all
before computing the matrix T . Instead, we have to pre-process the time series of the
stocks on a pair-by-pair basis before symbolizing it for each pair in a dedicated manner,
which slows down the process considerably.

Symbolization

Here we provide further details on the symbolization technique. A k�dimensional
symbol of the time series X(t) at time t,
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= {j1, . . . , jk�1, jk} , (11)

is defined by ordering the values x(k)
t+�

= {x
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} in an ascending order
{x

t�(j1�1)�, . . . , xt�(jk�1�1)�, xt�(jk�1)�}. If there are repeated values, the one with the
smaller index comes first [39]. Here we are going to give a few examples, making the
dependance on the time steps scale � explicit. Let us consider the time series in Table 1.

Table 1

X(t) 13 22 45 60 12 33 70 19 20 15 12 42
t 1 2 3 4 5 6 7 8 9 10 11 12

Following the definition given above, and in a way of demonstration, we provide
some of the symbols constructed from this time series in Table 2. This table contain
samples of symbols extracted from the sequence in Table 1. The first three symbols
have k = 2, the last three have k = 3. For each case we evaluate three different time
scales � = 1, 2, 3.

Table 2

Symbolization

Symbol Sequence considered Symbol value

k = 2
x̂

2,1
12 {15, 12} {2, 1}

x̂

2,2
11 {70, 20} {2, 1}

x̂

2,3
10 {60, 70} {1, 2}

k = 3
x̂

3,1
12 {20, 15, 12} {3, 2, 1}

x̂

3,2
11 {12, 70, 20} {1, 3, 2}

x̂

3,3
10 {13, 60, 70} {1, 2, 3}

Details on the evaluation of I(X, Y )

In this section we provide further details on the method used to evaluate the values
I(X,Y ), used in Eqs. (5), (6) and (7). These quantities reflect the amount of genuine
information flow from time series X(t) to the time series Y (t) and are obtained by
processing the measure introduced in Eq. (1). Cleaning these matrices from spurious
values is not an easy task; after the construction of a null model, one needs to employ a
thresholding method to filter out random effects.



For each window w, we consider the set T of TEs from the true dataset and we
formed a benchmark set S of TEs by collecting the values obtained from the surrogate
datasets in the 21 windows bracketing w, i.e. {w � 10, . . . , w, . . . , w + 10}. In other
words, we assumed that the null models of consecutive time windows do not differ too
much, given that the two windows are shifted by 25 days, corresponding to 5% of their
length. A comparison of the histograms h

T

(x) and h

S

(x) of the set T and S gives a
crude estimations of the p-values of the TEs computed for the true dataset, i.e. of the
probability that the values x = T

X!Y

obtained for the true dataset has been obtained
at random. This can be done computing, for each x, the ratio
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The ratio r decreases to 0 as x increases: small r values are associated with x values for
which it is more likely to have a genuine information flow. Thus, we associated a weigh
to each pair {X ! Y } given by Eq. (4), that we report below for convenience:
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with x = T

X!Y

, a = 100 and r

⇤ = 0.03. These two histograms can be seen in S1 Fig.
for two particular time windows. One of the possible pitfalls of this method is that
values in T are correlated to values in S. If this were to be the case, we would
underestimate the number of detected influences; however, as the scatterplot in S2 Fig.
shows, this is not the case. Using this value of r⇤ can be seen as a soft thresholding
method, which roughly corresponds to considering a p-value smaller than 0.05.
Statistically validated networks are obtained by considering much smaller thresholds
that take into account multiple comparison effects. By the way, employing such a strict
protocol would provide poor results in the present case because the possible retrievable
information is very small and we are forced to adopt a less conservative protocol.
Nevertheless, our results have been cross-validated by using the method described in
section and the fact that the null model is unable to reproduce the total information
flow patterns detected in the original dataset validates the quality of the analysis.

S1 Fig. Transfer entropy values - real and surrogate data. Histograms of
values found in the sets T and S for w = 80, i.e. the period of November 2008, using
the time scale of Fig. 1. The inset shows the same quantities computed at w = 45, i.e.
September 2005. While in the second case no information flows can be detected, in the
first, using the protocol discussed in this section, many directed influenced can be
obtained. This matrix values refer to � = 2, for which the amount of information is
maximized.

S2 Fig. Correlations between transfer entropy values - real and surrogate

data. Scatter plot of the values found in T at � = 2 in w = 80 versus those found in
the surrogate dataset at the same w and �. The values do not appear to show any
correlation between the two.


