
Appendices to: Ultrahigh Dimensional Variable
Selection for Interpolation of Point Referenced Spatial
Data: A Digital Soil Mapping Case Study

Benjamin R. Fitzpatrick1,2,3,*, David W. Lamb4,2, Kerrie Mengersen5,1,2,3

1 Mathematical Sciences School, Queensland University of
Technology (QUT), Australia
2 Cooperative Research Centre for Spatial Information (CRCSI),
Australia
3 Institute for Future Environments, Queensland University of
Technology (QUT), Australia
4 School of Science and Technology, University of New England
(UNE), Australia
5 ARC Centre of Excellence for Mathematical and Statistical
Frontiers, Queensland University of Technology (QUT), Australia
* E-mail: Corresponding b1.fitzpatrick@qut.edu.au

Appendix A and Appendix B contain additional context for our case study
while Appendix C, Appendix D and Appendix E contain expanded consider-
ations of methodology relevant to our case study. Appendix A contains a de-
scription of the study site and field methodology. In Appendix B we explain
our choice of covariates in terms of data availability and previous soil carbon
modelling studies. In Appendix C we compare and contrast modelling methods
of various degrees of appropriateness for data like those of our case in order
to make the case for using modelling method we have adopted. In Appendix
D we outline our method for filtering design matrices to enforce a maximum
correlation coefficient magnitude between remaining covariates. In Appendix E
we explain our choice of design matrix filtering austerity and training set size
for our cross validation scheme.

1 Appendix A: Study Site and Field Methodol-
ogy

1.1 Study Site

The study site was a 137ha area of land on the Sustainable, Manageable, Ac-
cessible, Rural Technology (SMART) Farm of the University of New England
near Armidale, New South Wales (NSW), Australia. The north-west corner
of the SMART farm had coordinates 30◦22′59′′S 151◦35′23′′E and the south-
east corner of the SMART farm had coordinates 30◦27′26′′S 151◦39′52′′E. The
study site was situated at the base of Mount Duval (1393m [1]) and formed a
part of the Uralla Plutonic Suite/Mount Duval Adamellite (acid porphyritic,
hornblende-biotite monzogranite) and was characterized by yellow and brown
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chromosols [2] upon the hills with alluvial soils and siliceous sand complexes dis-
tributed along the drainage routes. The study site typically received 790mm of
annual, summer dominant rainfall [3]. The maximum elevation within the study
site was 1120m and the elevation range across the study site was less than 110m.
The study site consisted of selectively cleared native pasture containing some
remnant vegetation and regrowth and had historically been grazed by sheep and
cattle. The south-east corner of the study site was situated at grid reference
371434E, 6632499N MGA GDA 94 Zone 56. Being used to grow pasture and
receiving in excess of 450mm of annual rainfall, soils in this area fell within
the class of agricultural soils deemed to have the highest potential of any agri-
cultural soils in NSW for sequestration of atmospheric carbon as Soil Organic
Carbon (SOC) [4]. A hill-shaded plot of a digital elevation model cropped to
the approximate boundaries of the study site and an aerial photograph of the
study site have been presented as the panels of Fig. 1.

1.2 Proximal Data Collection

1.2.1 Covariates

The study area was surveyed three times in 2009 for soil apparent electrical
conductivity (ECa) and the reflectance of the top of the pasture canopy under
active illumination. The first survey was conducted in the warm summer month
of February, following a prolonged dry period (0mm of precipitation in the pre-
ceding seven days) in what was otherwise the second wettest month of the year.
The second survey was conducted in May, immediately after a significant rain-
fall event (84mm in the preceding seven days) in what was otherwise the cooler
middle of the year when less rain fell than in summer. The third survey was
conducted in November, which marked the end of the winter growing season
and was a month in which less rain fell than did in the wet month of October
and the very wet month of December. These surveys were conducted by an
all terrain vehicle (ATV) towing a sensory array that consisted of a specially
configured Geonics EM38 unit (Geonics Ontario Canada), an LED illumina-
tion array, near-infrared and visible light reflectance sensors (Crop CircleTM ,
Holland Scientific, USA) and a differential global positioning system (dGPS)
(Trimble, Sunnyvale CA USA).

The Geonics EM38 instrument measured soil ECa which may be understood as
the integral of the electrical conductivity response recorded across soil depths.
To collect these data the EM38 instrument emitted a varying magnetic field
which induced an electric current in the soil underneath the instrument. The
electric current induced in the soil created a magnetic field, the strength of
which was proportional to the amount of electric current induced. The strength
of the magnetic field that resulted from the current induced in the soil was
taken as indicative of the strength of this induced electric current and recorded
by the instrument. The strength of the electric current induced in the soil by the
instrument-emitted electric field varied as a function of depth. With a Geonics
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Figure 1: a) A hill shaded terrain surface for the study site calculated from a
digital elevation model. b) An aerial photograph of the study site. The locations
at which soil core samples were collected have been depicted as filled circles in
both panels.
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EM38 instrument operated in the vertical dipole orientation, as Garraway et
al. orientated the instrument in their survey, the relative signal response, Sv,
varied with depth, z, as follows Sv(z) = 4z

(4z2+1)
3
2

[5]. Due to air essentially

not conducting electricity at these strengths of inductive magnetic fields, the
conductivity signal commenced at the soil surface. Thus the ECa measured by
the EM38 instrument in vertical dipole mode was

∫∞
H
σ(z)Sv(z)dz where σ(z)

was the electrical conductivity of the soil at depth z and Sv(z) was the relative
signal response of the soil at depth z [5]. Thus, when operated in vertical dipole
mode, the Geonics EM38 instrument had a peak relative signal response to the
electrical conductivity of the soil 350mm below the instrument and was essential
insensitive to the electrical conductivity of any medium immediately below the
instrument. Garraway et al. mounted a Geonics EM38 instrument on a rubber
sled that held the instrument approximately 15mm above the ground [6] and
towed this sled around the study area. Thus the ECa data we have for the case
study would have been dominated by the soil electrical conductivity at depths
around the relative signal response peak at 335mm below the soil surface with
very little contribution from the electrical conductivity of the soil surface.

The reflectance sensors measured top of pasture reflectance of active illumi-
nation in the Near InfraRed (NIR) and visible Red (RED) regions of the elec-
tromagnetic spectrum. This style of proximal sensing of the reflectance of active
illumination has been applied to both crop and soil mapping [7]. The electro-
optical principles governing the effectiveness of such sensors have been discussed
in Holland et al. [2012]. The ECa, RED reflectance and NIR reflectance were
recorded simultaneously at regular time intervals as the ATV traversed the
study area. The east-west and north-south coordinates that accompanied each
of these covariate observations were also recorded along with the associated
Position Dilution Of Precision (PDOP) and Horizontal Dilution of Precision
(HDOP) values. The data from each of the ATV surveys were cleaned of obser-
vations with large inaccuracies in positioning (as assessed by HDOP and PDOP
measurements). The number of point observations that remained from each
ATV survey after this cleaning had been conducted have been included in Table
1.

1.2.2 Response

In 2009, the study area was divided into five strata by means of k-means clus-
tering [8] the red, green and blue channels from aerial imagery and the ECa
data from the February survey [3]. At least six locations for soil core sampling
were randomly selected within each strata with additional locations manually
selected to improve the representation of landscape attributes. This stratified
random sampling approach to choosing locations for soil core samples was sim-
ilar to the process outlined in [9]. As a result, soil samples were collected to
a depth of 200mm at 60 locations across the study area with locations georef-
erenced using a differential Global Positioning System (dGPS) instrument. At
each of the 60 dGPS coordinates, three soil cores were collected from within a
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Table 1: A summary of the types of data used in the case study, including
for each type of data the: date of collection/publication, type of variable and
number of observations or resolution (pixel dimensions).

Variable Collected or Type Observations or
Published Resolution

SOC 2009 Geostatistical 60
ECa & VI Feb 2009 Geostatistical 16179

May 2009 Geostatistical 16094
Nov 2009 Geostatistical 14059

FPC 2011 & 2012 Raster 10m2

DEM & DEM Products 2004 Raster 25m2

Radiometric & 2002 & 2003 Raster 50m2

Electromagnetic
Survey

abbreviations: VI = Vegetation Indices, DEM = Digital Elevation Model,
FPC = Foliar Projective Cover, Feb = February and Nov = November.

1m radius of the coordinates and aggregated to form a single soil sample that
was laboratory analyzed for percentage SOC (hereafter %SOC). Garraway et al.
detailed the preparation of soil samples for assessment of the total organic car-
bon with a Carlo Erba NA 1500 solid sample analyzer (Carlo Erba Instruments,
Milan, Italy).

1.3 Remotely Sensed Data

A 25m2 resolution Digital Elevation Model (DEM) (sourced from the Depart-
ment of Lands, New South Wales State Government, Australia) for the Armidale-
Dumaresq region which contained the catchment in which the study area was
situated was read into the System for Automated Geoscientific Analyses (SAGA
v2.1.0 [10]) software to calculate the terrain topographic and hydrological at-
tributes listed in Table 2. The ready availability of the attributes listed in Table
2 and potential relevance of topography and hydrology to SOC distributions gen-
erally, lead us to include the full suite of such attributes that may be calculated
with SAGA as potential covariates in this analysis. The resulting GIS layers were
then read into R [11] with the ‘RSAGA’ [12] package. Full cover layers for Fo-
liar Projective Cover (FPC) produced by applying the Statewide Landcover and
Trees Study (https://www.qld.gov.au/environment/land/vegetation/mapping/slats-
methodology/) method to imagery from the SPOT5 satellite (10m2 resolution)
were acquired for the study region from 2012 and 2011 from the New South
Wales State Government Department of Environment. These layers were read
into R [11] with the ‘raster’ package [13]. Potassium (K), Uranium (U) and
Thorium (Th) count layers from an airborne γ ray radiometric survey [14] and
similar layers from six channels of electromagnetic imagery [15] were read into
R [11] with the ‘raster’ [13] package.
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Table 2: The 63 potential covariates from which models were built for soil
organic carbon in this study.

Source Covariate Name Acronym

ATV Top of Pasture Soil Apparent Electrical Conductivity ECA
Surveys Near InfraRed Reflectance NIR
12 covariates Red Reflectance RED
from each of February, Simple Ratio SR
May & November Difference Vegetation Index DVI
= 36 covariates Normalized Difference Vegetation Index NDVI

Soil Adjusted Vegetation Index SAVI
Non-Linear Vegetation Index NLVI
Modified Non-Linear Vegetation Index MNLVI
Modified Simple Ratio MSR
Transformed Vegetation Index TVI
Re-normalised Difference Vegetation Index RDVI

Terrain & Catchment Area CatAr
Hyrdology Metrics Catchment Height CatHe
Calculated from a Catchment Slope CatSl
25m2 resolution Cosine(Aspect) CosAsp
DEM Elevation Elev
= 16 Covariates Slope Length Factor LSF

Plan Curvature PlanC
Profile Curvature ProfC
Sky View Factor SVF
Slope Slp
Stream Power Index SPI
Terrain Ruggedness Index TRI
Topographic Position Index TPI
Vector Terrain Ruggedness VTR
Visible Sky VS
Wetness Index WI

Foliar Projective Cover 2011 FPCI
Layers = 2 Covariates 2012 FPCII
Electromagnetic 1 MagI
Imagery Channels 2 MagII
= 6 Covariates 3 MagIII

4 MagIV
5 MagV
6 MagVI

γ Radiometric Layers Potassium K
= 3 Covariates Thorium Th

Uranium U
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Cartographic projection systems are used to project latitude and longitude
coordinates from a particular region of the surface of the Earth onto a two
dimensional plane. In this analysis all spatial coordinates were treated as co-
ordinates on a two dimensional plane and as such it was important to ensure
that all data layers utilised the same projection system. This was accomplished
with the R [11] package ‘raster’ [13] through the re-projection of all data layers
that did not already use the most common projection system among the data
layers to this projection system, namely a UTM projection for zone 56 South
using the WGS84 ellipse.

2 Appendix B: Choice of Covariates

In this Appendix we explain our choice of environmental characteristics consid-
ered as potential covariates for modelling soil carbon. The first stage in collating
this set of potential covariates was to identify the common covariates used in
soil carbon modelling via a review of the available literature. Once we had this
list of potential covariates, the second stage was to identify which of these we
could obtain for our case study site.

2.1 Soil Organic Carbon and Soil Apparent Electrical Con-
ductivity

Soil apparent electrical conductivity (ECa) has variously been found indicative
of some or all of soil: moisture content, pore distribution, pore size, salinity, clay
content, mineralogy, cation exchange capacity and temperature [16]. Discretiz-
ing soil ECa values into four classes produced significant factors in separate
ANOVAs for each of soil total organic matter, soil particulate organic matter
and total soil carbon in the top 30cm of soil sampled across 250 ha of farmland
used for wheat, corn and millet in the state of Colorado in the United States
of America (USA) [17]. A negative correlation was detected between soil ECa
and SOC (r = -0.42) in the top 90cm of soil in 9ha of farmland that had a long
history of cotton row cropping in Alabama, USA but no such correlation was
detected in the top 30cm [18]. Soil ECa was more correlated with soil carbon
(r = -0.65 to -0.76) than were any of the local relative elevation, local slope
and satellite measured soil surface reflectance of near bare fields at three sites
(48.7 ha, 52.4 ha and 65.4 ha in area respectively) in farmland used for maize
and soybean cropping in Nebraska, USA [19]. Studies have also been performed
where it seemed likely that influences other than SOC were dominating the soil
ECa signal. Principal Component Analysis (PCA) of soil properties in an 8ha
agricultural field in Flanders, Belgium yielded largely independent spatial pat-
terns in soil pH, ECa and SOC [20]. Furthermore, in the soils of the world’s
oldest continuous cotton experiment (Alabama, USA) little correlation was de-
tected between SOC in the top 15cm of soil and the ECa of the top 30cm of
soil across 0.4ha of land [21].
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2.2 Soil Organic Carbon and Spectral Vegetation Indices

Land plant biomass in any location will have been influenced by many soil con-
ditions. Through direct and indirect effects on soil: structural stability, water
and nutrient retention, faunal activity and diversity, and elemental recycling [22]
SOC levels may have influenced land plant biomass in many situations. Con-
versely, plants will have also provided an input of carbon to SOC via litter
fall and root turn over. Thus empirical correlations between %SOC and plant
biomass are plausible. The amount of green plant biomass present in a location
may be indicated by the density of green leaves present above the soil there.
The density of green leaves present above the land surface has often been esti-
mated from the reflection spectra of the land surface when observed from above
canopy height. Three spectral signatures of particular interest for these consid-
erations have been identified as: those of healthy green leaves, those of stressed
or senescent green leaves and those of agricultural soils. The marked difference
in the intensities of light reflected from green leaves in the visible red (RED)
and near infra red (NIR) wavelengths and the general weakness or absence of
such a ‘red edge’ in the spectral reflectance signatures of stressed or senescent
leaves and agricultural soils has formed the basis of many spectral vegetation
indices used for monitoring vegetation [23]. Healthy leaves have typically ex-
hibited a high reflectance of NIR light due to scattering of these wavelengths
at the interface between the mesophyll and cell walls and low absorption of
these wavelengths by photosynthetic pigments and organelles [23]. Whereas,
healthy green leaves have typically displayed a low reflectance of visible wave-
lengths due to the high absorption of light in this region of the spectrum by
photosynthetic and accessory pigments [23]. Green plant stress and senescence
have often manifested in the form of depressed chlorophyll concentrations and
the expression of accessory leaf pigments which together lower the absorption
of visible wavelengths by leaves. Where stress or senescence has lowered the ab-
sorption of visible wavelengths by leaves the reflectance peak of such leaves will
have widened correspondingly from the green region of the spectrum typical of
healthy green leaves through towards redder wavelengths. Where stress or senes-
cence has manifested in this broadened reflectance of visible spectra by leaves
a simultaneous decrease in the NIR reflectance of these leaves will have also
occurred. Thus where it has occurred, stress or senescence would have resulted
in a loss or weakening of the abrupt ‘red edge’ typical of the reflectance spectra
of healthy green leaves [23]. Similarly, agricultural soils have been characterised
by a lack of any such sharp contrast in the reflectance intensities of different
wavelengths [23]. Most spectral vegetation indices have been constructed as
functions of NIR and RED reflectance designed to quantify some aspect of the
expected differences between the reflectance spectra of healthy green leaves and
those of soils and stressed or senescent leaves. Thus vegetation indices have
been designed to provide an estimate of the quantity of green plant material
that contributed to the reflectance spectra of a land surface by quantifying the
extent to which such differences in NIR and RED intensities occurred within this
spectra [23]. The spectral signature obtained from an entire canopy may have
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differed markedly from that obtained from an individual green leaf and further-
more may have varied across the growing season as the canopy geometry altered
with plant growth [23]. Thus differences between vegetation indices calculated
from reflectance surveys conducted at the same location at different stages in
the year may have yielded information about how green plant biomass there
changed across the growing season. Changes in biomass across a growing sea-
son could, in turn, have been indicative of soil attributes baring other stronger
influences on plant biomass lost or accrued. Thus the comparison of vegetation
index values when collected in the same location at different points in the plant
growth cycle could have been indicative of soil properties. For instance, plants
that grew in poorer soils and experienced otherwise similar conditions could
reasonably be expected to have produced less biomass in a growing season than
the same plants in more favourable soils. Furthermore, the presence of SOC in
surface soils has been documented as increasing soil aggregation thereby creat-
ing larger lacunae (also referred to as interstitial spaces) into which water may
drain from the soil surface. Thus SOC has been broadly classified as beneficial
to the infiltration of soil by water and the retention of water by soil [24]. Thus
increased %SOC at a location could in turn aid water retention there and allow
plants that undergo seasonal curing (e.g. grasses like those at our case study
site) to remain green longer into the dry part of the year at that location.

A review of studies of the correlations between soil organic matter and crop
reflectance in visible and NIR regions of the electromagnetic spectrum and the
vegetation indices thereby derived formed a section of the review paper [16]. In
certain situations, above ground plant biomass may have been related to SOC
concentrations. Where this has been the case vegetation indices may have held
relevance to %SOC concentrations. This seems to have been the case in the
following studies. The Normalised Difference Vegetation Index (NDVI [25]) and
the Soil Adjusted Vegetation Index (SAVI [26]) have both achieved considerable
popularity as vegetation indices. A positive correlation between canopy NDVI
and biomass was detected in a 7ha cotton field in Larissa, Greece [27]. Further-
more, the pasture canopy SAVI was found to be the best of a range of vegetation
spectral indices for predicting pasture green dry mass across four 50ha paddocks
in New South Wales, Australia [28]. Much like soil ECa, plant visible and NIR
reflectance have variously been found correlated with soil properties other than
SOC such as soil moisture and Cation Exchange Capacity (CEC) [16] along
with prevailing climate, ecosystem, terrain and physical soil properties [29]. We
have summarised studies that found correlations between any of a selection of
vegetation indices that may be calculated from reflectance intensities in the NIR
and RED bands and soil carbon in Table 3. Since our study site consisted of
native pasture with remnant woody vegetation we restricted this summary to
one of studies that were conducted in pastures, grasslands, prairies and steppes.
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Table 3: Vegetation Indices reported to have been correlated with grass biomass
(which were thus possibly also correlated with soil carbon) in pastures, grass-
lands, prairies and steppes.

VI Full Name Formula Correlation
with Grass
Biomass

SR Simple Ratio NIR
RED [28]

DVI Difference Vegetation In-
dex

NIR−RED [30, 31]

NDVI Normalized Difference
Vegetation Index

NIR−RED
NIR+RED [28, 30]

SAVI Soil Adjusted Vegetation
Index*

(NIR−RED)(1+L)
NIR+RED+L [28]

NLI Non-Linear Vegetation In-
dex

NIR2−RED
NIR2+RED [28]

MNLI Modified Non-Linear Veg-
etation Index

(NIR2−RED)(1+L)
NIR2+RED+L [28]

MSR Modified Simple Ratio
NIR
RED−1

( NIRRED )1/2+1
[28]

TVI Transformed Vegetation
Index

(NDV I + 0.5)1/2 [31]

RDVI Re-Normalised Difference
Vegetation Index

NIR−V IS
(NIR+V IS)1/2

[31]

* L = 0.5 recommended for wide range of leaf area index values
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2.3 Soil Organic Carbon and Scattered Paddock Trees

Below ground root turnover and above ground litter fall have both been recog-
nised as sources of detrital carbon to topsoil. Thus in native pastures with
remnant woody vegetation in the form of scattered paddock trees, such as the
pastures from which our case study data were collected, the locations of these
trees may have influenced the spatial distribution of SOC. Elevated concentra-
tions of organic matter in soils beneath and around trees and shrubs relative
to surrounding soils have been observed across a variety of environments and
ecosystems [32, 33]. In the Northern Tablelands of New South Wales (the re-
gion from which the data analysed here were collected) an ANOVA detected
significantly elevated (P < 0.001) organic carbon content in the top 5cm of soils
underneath the canopies of scattered paddock trees compared to soils beyond
these canopy margins [33].

2.4 Soil Organic Carbon and Digital Elevation Model De-
rived Terrain Descriptors

Climate, parent material, topography and biotic factors may all have influenced
pedogenesis to varying degrees in different ecological and geographic contexts.
Topography may have influenced soil characteristics to a greater or lesser ex-
tent by having influenced hydrologic and erosional processes (e.g. soil water
content, runoff and sedimentation) along with soil temperature (via aspect, ex-
posure etc.) which together form and alter soils through mineral weathering,
erosion, leaching, decomposition, horizontal zonation and sedimentation [34].
Topography may also have affected the process of SOC loss that accompanied
the conversion of natural land into agricultural land by having influenced SOC:
leaching, movement as dissolved organic carbon or particulate organic carbon
suspended in water flowing over or through the soil, and erosion by wind or
water runoff moving soil and the constituent SOC [35]. For the purposes of geo-
statistical modelling, topography has often been quantified via terrain metrics
(e.g. elevation, slope, aspect, curvature, etc.) and hydrological metrics (e.g.
catchment area, soil wetness index, stream force index, etc.) calculated for each
of the pixels in a digital elevation model (DEM) of the land surface.

In 460ha of cropping and pastoral land in north-west New South Wales, Aus-
tralia regression modelling identified elevation and plan curvature along with
ECa, γ−ray radiometric potassium and thorium related emissions as useful
predictors of total soil carbon [9]. In a 9ha field with a long history of row crop
monoculture subject to conventional tillage in central Alabama, USA SOC was
found correlated with a compound topographic index (metric of potential for
water pooling on the land surface) (r = 0.48) and with land slope (r = -0.42)
which lead the authors to postulate that erosion and field scale hydrodynamics
were likely responsible for a large portion of the variability detected there in
soil carbon [36]. In mapping soil carbon in a 12.5ha field with a history of crop
rotation between corn and soy beans in central Michigan, USA models that
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utilised terrain slope, aspect, plan curvature, profile curvature and tangential
curvature were generally found to perform better than those that did not [37].
In 9ha of cropping soil typically used for cotton in Alabama, USA models with
combined topographic index, elevation, slope, silt content and ECa as covariates
were found to account for up to 50% of the SOC variability leading the authors
to conclude that the spatial distribution of SOC had been affected prominently
by topography and historical erosion [38]. In this same farmland in 2006 SOC
concentrations in the top 30cm of soil were found to be correlated with the
composite terrain index (r = 0.48) and terrain slope (r = -0.41) [18]. In a 4.2ha
catchment used as agricultural land in North Rhine-Westphalia, Germany cor-
relations between SOC and profile curvature, plan curvature, catchment area,
stream power index [34] and predictions from water and tillage erosion mod-
els [39, 40, 41] of soil redistribution patterns have been detected [42]. From a
study of 5.4ha of a dryland agroecosystem with a long history of winter wheat
in North-Eastern Colorado, slope and wetness index were identified as the ter-
rain attributes most correlated with soil organic matter [34]. Variable selection
in this same study returned a linear model that explained 48% of soil organic
matter variation with the covariates wetness index, stream power index and as-
pect. Studies that detected correlations between soil carbon and a selection of
topography and hydrology metrics that may be calculated with the SAGA [10]
have been summarised in Table 4.

2.5 Soil Organic Carbon and Radiometric Imaging of the
Earth Surface

Recording γ radiation naturally emitted from the surface of the Earth has been
established as a means to detect geochemical anomalies in particular those asso-
ciated with ore bodies [43]. Collecting aerial images of such γ radiation emissions
has been termed γ radiometry and the spectral signatures most frequently ob-
served have been those associated with the production of 238U , 232Th and 40K
daughter radionuclides [43]. In addition to detecting minerals rich in Uranium
and Thorium and mapping geology based on prior knowledge of associations be-
tween the above radionuclides and geological materials, γ radiometry of a land-
scape has also facilitated the tracking of geochemical anomalies and inference
regarding erosional processes therein [43]. Such links to pedological processes
have enabled γ radiometry to be used for soil mapping [43]. On a broad spatial
scale airborne radiometric data (particularly the K band) was found to improve
the mean square error of predictions of soil organic carbon across Northern Ire-
land (∼13,843 km2) when coupled with elevation data to 30.6% [44]. Similarly,
digital elevation model derived soil properties and γ radiometric survey data
when used to build regression trees were found to account for 54% of the total
soil carbon variation across 50, 000 ha of state forest in south eastern Aus-
tralia [45]. Furthermore, γ radiometry has also been found useful for predicting
the spatial distribution of soil carbon on scales closer to that across which our
data were collected. Over a 5625ha square area of cropping land on the lower
plains of the Macquarie River, News South Wales (Australia) percentage soil or-
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Table 4: Topographic and hydrological metrics reported to have been correlated
with soil carbon in agricultural land.

Metric Correlation with
Soil Carbon

Aspect [34, 37]

Catchment Area [42]

Elevation [38, 9]

Plan Curvature [34, 37, 42, 9]

Profile Curvature [34, 37, 42]

Slope [34, 37, 38, 36, 18]

Stream Power Index [34, 42]

Tangential Curvature [37]

Topographic Indices [38, 36, 18]

Wetness Index [34]

ganic carbon in the top soil was found to be weakly negatively correlated with
the concentrations of Potassium and Uranium in the ground as measured by a γ
radiometric survey [46]. Furthermore, regression modelling identified elevation
and plan curvature along with ECa, γ−ray radiometric potassium and thorium
reflectances as useful predictors of total soil carbon in 460ha of cropping and
pastoral land in New South Wales [9].

3 Appendix C: Choice of Modelling Method

In this appendix we compare and contrast a selection of Multiple Linear Re-
gression (hereafter MLR) and Binary Tree (hereafter BT) based techniques in
the context of data and objectives akin to those of our case study. We consider
the defining characteristics of our case study data to be: (1) more potential
covariate terms than observations (the p > n or ultrahigh dimensional situation
for variable selection) (2) a high degree of collinearity among the potential co-
variate terms and (3) suspected importance of non-linear effects of covariates
and interactions of covariate effects. The primary objective of our case study
analysis was covariate assisted spatial interpolation of the response. Our case
study also had the additional context of the modest computational resources
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provided by one mid-range laptop and our desire for an easily interpretable pre-
dictive mechanism. In Section 3.1 we introduce a selection of BT based models
and in Section 3.2 we introduce a selection of MLR based models. In Section
3.3 we compare the relative merits of the model introduced in Section 3.1 and
Section 3.2 for modelling data like those of our case study with our objective of
covariate assisted spatial interpolation of the response.

3.1 An Introduction to the Binary Tree Based Models
Considered in this Work

3.1.1 CART

Classification And Regression Trees (CART) [47] are two closely related tech-
niques. Both utilise a binary tree based model structure but classification trees
predict a categorical response while regression trees predict a continuous re-
sponse. Our interest here is in techniques for modeling a continuous response
and thus methods for solving regression problems. Subsequently we focus on
regression trees. The regression trees of Breiman et al. 1984 partition the re-
sponse observations yi, i = 1, ..., n, into M mutually exclusive sets by recursively
partitioning the associated covariate space into M mutually exclusive regions
R1, ..., RM through binary divisions along covariate axes. Each associated subset
of the response is then modelled by the single parameter, maximum likelihood
estimator for those observations, the group mean ĉm [48]. Thus, regression trees
model a continuous response as per Equation 1.

ŷi =

M∑
m=1

ĉmI(xi,. ∈ Rm) (1)

Each yi will be modelled by one and only one ĉm since the Rm are disjoint and
thus for any particular i, xi,. ∈ Rm for exactly one unique Rm.

Thus when continuous covariates are supplied to regression trees the predictions
produced vary in a stepwise manner across the range of the covariates whereas
the predictions from an MLR supplied with these same covariates would vary in
a continuous manner across this same range. Furthermore, the recursive nature
of the binary partitions of regression trees enable far more complex interactions
to be modelled than those permitted by taking products of pairs of covariates as
may be done in MLR. However, deep trees (trees with many binary partitions)
would be required to form good approximations to even simple linear relation-
ships between covariates and the response whereas such relationships may be
modelled naturally as components of the structure of MLR. Deep trees rapidly
become a concern with a limited number of response observations since they re-
sult in terminal node parameters being estimated from fewer observations (and
thus less reliably).

Frequentist CART Regression trees, as proposed by Breiman et al. 1984, are
constructed via recursive binary partitions of the observations based on whether
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particular covariate values of these observations exceeded threshold values with
the range of these covariates. This results in the M mutually exclusive regions
of covariate space R1, ..., RM referred to in Equation 1. Within each particular
Rm the ĉm that minimises the residual sum of squares for predicting the re-
sponse in that region is simply the group mean for those response observations
ĉm = E(yi|xi ∈ Rm). The challenge when fitting regression trees is identifying
a sequence of binary partitions that define a set of regions such that the resid-
ual sum of squares from the entire tree is low. Since an exhaustive search of
the potential regression trees that may be constructed from a particular set of
data is computationally infeasible in all but the most trivial cases, regression
trees are typically constructed via a greedy algorithm in the hope of identi-
fying a regression tree that fits the data well via a computationally tractable
procedure [48]. Greedy algorithms are so named because at each step in the
iterations of such an algorithm the decision that yields the best improvement
in the decision metric (e.g. fit of the model etc.) between the current state and
the next is the decisions that is taken. As such there is no long term planning or
stochasticity involved in such algorithms and thus no guarantee of identifying
the optimal solution. Indeed, such algorithms can be seen to be highly sensitive
to local maxima.

For fitting regression trees using the residual sum of squares as the criterion
for decisions to partition the data, the greedy algorithm is as follows. The algo-
rithm commences with all data in a single set termed the root node of the tree.
All possible binary divisions of this root node set along all possible covariate
axes are then constructed in turn, and the residual sums of squares resulting
from prediction of the response with the pairs of associated group means are
computed. With a finite number of observations there is a finite number of ways
to divide the data into two subsets based on the covariate values of these ob-
servations. This complete but finite set of possible divisions of the data may be
obtained by considering threshold values equidistant between each of the pairs
of observed values of a covariate when these values are arranged in an ascending
(or descending sequence) for each covariate in turn. The binary partition that
yields the best improvement in the residual sum of squares for the entire tree
relative to that at the previous step is then selected as the partition to use at
this step in the algorithm and the process is repeated for each of the resulting
subsets (also referred to as child nodes). This recursive partitioning process
is then continued until some stopping criterion is met. A simple and popular
choice of stopping criterion is a minimum number of observations per terminal
node from which the practitioner considers it is still reliable to estimate a mean.
Once this tree growing algorithm is halted by the satisfaction of the selected
stopping criterion the resulting tree may then be ‘pruned’ by sequentially ex-
amining the effects of collapsing the parent nodes of the current terminal nodes
on the basis of some cost-complexity criterion and taking this action where it is
judged meritorious. More formally this growing and subsequent pruning proce-
dure may be described as follows.
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The algorithm commences at the root node which contains all observations.
Given the full set of covariates as the design matrix, X, the algorithm takes
each covariate, Xj , in turn and computes the set of threshold values that would
each produce different subsets of the response should they be used to define a
binary partition of the data based on this covariate. For each unique pairing of
a particular covariate, Xj , and a particular threshold value for that covariate,
s, the regions defined by a binary partition based on Xj and s are two disjoint
regions of covariate space: R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}.
The algorithm compares all such regions that may be constructed at this step
to identify the choice of covariate Xj and threshold value s that solves

arg min
j,s

(
arg min

c1

( ∑
xi,j∈R1(j,s)

(yi − ĉ1)2
)

+ arg min
c2

( ∑
xi,j∈R2(j,s)

(yi − ĉ2)2
))

(2)

where ĉ1 and ĉ2 are calculated for each pairs (j, s) as the respective response
group means: ĉ1 = E

(
yi|xi,j ∈ R1(j, s)

)
and ĉ2 = E

(
yi|xi,j ∈ R2(j, s)

)
. The

resulting binary partition of the data is then made and the above process is
repeated for each of the resulting child nodes until some stopping criterion,
such as a threshold minimum number of observations per terminal node, is
satisfied at which point the algorithm is halted. The resulting tree may then be
pruned recursively subject to the changes in some cost-complexity criterion that
result from collapsing the parent nodes of the various current terminal nodes.
More formally, let: T ⊂ T0 be defined as any tree that may be obtained by
collapsing some non-terminal node(s) of T0, |T | be defined as the number of
terminal nodes in tree T and let m index the terminal nodes of T each with the
associated subset of the data Rm. A cost-complexity criterion, Cα(T ), may be
defined as per Equation 6.

Nm = count{xi ∈ Rm}, (3)

ĉm =
1

Nm

∑
xi∈Rm

yi, (4)

Qm(T ) =
1

Nm

∑
xi∈Rm

(yi − ĉm)2 (5)

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T |, α ≥ 0 (6)

. This cost-complexity criterion is the sum of the residual sum of squares for the
predictions from the whole tree and a multiple, α, of the number of terminal
nodes in the tree. The tuning parameter α controls the trade off between the
fit of the tree to the data and the complexity of the tree as quantified by the
number of terminal nodes of the the tree. Increases in α will yield smaller
trees with larger residual sums of squares. Each pair of original tree T0, grown
as above, and tuning parameter value α will have some smallest sub-tree Tα
that minimizes Cα(T ). This Tα may be identified by weakest link pruning [48]
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whereby the internal nodes that yield the smallest per-node increase in the

residual sum of squares
|T |∑
m=1

NmQm(T ) when collapsed are sequentially collapsed

until there are no longer any binary partitions to collapse as the entire data are
once again contained in the original ‘root’ node associated set. It has been
shown that the sequence of sub-trees thus obtained dependably contains Tα [48,
47, 49]. For the purposes of building a regression tree for interpolation, α may
be estimated via cross validation [48]. This is traditionally how regression trees
have been fitted however there is also an approach extant for fitting regression
trees under the Bayesian paradigm.

Bayesian CART The Bayesian approach to fitting CART models was devel-
oped by Chipman et al. (1998) and involves the use of particular prior specifica-
tions for the terminal node parameters and the tree structure itself along with a
stochastic search. The Bayesian CART [50] is a CART model, it is the manner
in which the model is fitted and the underlying assumptions that are Bayesian.
Continuing our focus on models for a continuous response variable with continu-
ous covariates we will describe the Bayesian approach to fitting a regression tree.
The Bayesian regression tree model consists of a binary tree T with b terminal
nodes and the associated parameter vector Θ = (θ1, θ2, ..., θb), each θi being
associated with the ith terminal node of the tree. If xi,. = [xi,1, xi,2, ..., xi,p]
falls within the region defined by the ith terminal node, the associated response
variable yi|xi,. is modeled by the distribution f(yi|θi) with f representing some
parametric family controlled by parameter(s) θi. Chipman et al do not specify
a closed form prior for the binary tree structure but instead specify it implicitly
by generating trees from a tree growing stochastic process. In this manner each
tree grown by the stochastic process forms a randomly drawn observation from
this tree prior. Such specification of the tree prior allows for simple evalua-
tion of prior probability p(T ) for any tree T which in turn may be employed
within a Metropolis Hasting (MH) algorithm. To draw an observation from the
tree prior a new tree is propagated from the tree consisting of a single ‘root’
node by stochastically dividing terminal nodes in an iterative process. This
tree propagating process is governed by a function that controls the selection of
terminal nodes for division and another function that controls the assignment
of a division rule to a terminal node that has been selected to be divided. The
function pDIV IDE(η, T ) generates the probability for tree T that terminal node
η is divided. If terminal node η of tree T is chosen to be divided, the function
pRULE(ρ|η, T ) generates the probability of assigning the division rule ρ to this
terminal node. A division rule for a binary partition specifies the covariate that
will be used to define the binary partition and the threshold value of this co-
variate which will determine the division of the observations into two groups
based on the values of this covariate associated with each of the observations.
The form and parameter values assigned to these functions collectively control
the frequency with which particular tree depths and geometries are generated
and thus the eventual weighting of such trees in the prior distribution. As such,

17



via influence on the prior, these functions may be used to guide the posterior
towards identifying trees of the desired depths and geometries (for instance to
emphasise trees with a minimum number of observations in each terminal node).
The priors for the parameters of the distribution functions used to model the
response observations in the terminal nodes may be taken as standard conjugate
forms. A convenient option for priors on the parameters Θ = (θ1, θ2, ..., θb) for
the terminal nodes 1, ..., b is to use mean shifted normal distributions for each

θi with (µ1, µ2, ..., µb)|σ, T iid ∼ N(µ̄, σ
2

α ) and σ2|T ∼ IG(ν2 ,
νλ
2 ). Such a for-

mulation permits each terminal node an individual mean parameter and models
all node mean parameters with independent and identical Normal distributions.
Should a more flexible formulation be desired an individual variance parame-
ter may be introduced for each terminal node mean via mean-variance shifted

normal distributions as follows i.e. for i = 1, 2, ..., b, µi|σi, T iid ∼ N(µ̄,
σ2
i

α )

and σ2
i |T ∼ IG(ν2 ,

νλ
2 ). Both the above the priors p(Θ|T ) facilitate closed from

solutions for p(Y |X,T ) =
∫
p(Y |X,Θ, T )p(Θ|T )dΘ to be obtained analytically.

Utilization of one of these closed form solutions along with a CART tree prior
P (T ) enables the posterior of T to be obtained subject to a normalizing con-
stant: p(T |X,Y ) ∝ p(Y |X,T )p(T ). The enormous number of trees that may be
constructed from all but the smallest of data will render an exhaustive search
of p(T |X,Y ) computationally intractable. Subsequently, the normalization con-
stant will not be obtainable nor will it be possible to identify which trees have
with the highest posterior probability. However, the posterior may still be ex-
plored using an MH algorithm to conduct a stochastic search. Such a stochastic
search will result in a Markov chain sequence of trees that converges towards
trees with higher posterior probabilities and converges in distribution to the
posterior p(T |Y,X). Chipman et al. (1998) note that their MH algorithm has
a tendency to move rapidly towards a group of similar trees with high posterior
probability proximate to the starting tree then remain in that vicinity exploring
that group of trees with small local steps for many subsequent iterations of the
algorithm. Given a large enough number of iterations MH algorithms will move
between posterior modes and explore the entirety of the trees possible but there
is no guarantee about how many iterations a MH algorithm must be run for
in order to achieve such a complete exploration. In light of these considera-
tions, Chipman et al. (1998) recommend comparing the results of multiple runs
of their MH algorithm each originating from different starting values (origin
trees). Chipman et al. (1998) recommend both multiple restarts of their MH
algorithm from the single root node tree, citing high initial variability in the
direction in which their MH algorithm will proceed often leading such restarts
to converge on quite different trees, and multiple restarts from start values se-
lected from interesting intermediate trees from previous runs of their algorithm
or trees identified by other methods (e.g. bootstrap bumping [51]). Such mul-
tiple restarts of the MH algorithm for fitting Bayesian CARTS will result in a
range of selected trees which can either be model averaged or chosen between
depending on the goals of the particular analysis. Aids for selecting the trees
to include in the model averaging or for selecting a single tree could include the
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residual sum of squares of the resulting tree (either alone or constituent in a
cost complexity metric) or plots of the observed likelihood of the trees p(Y |X,T )
against the number of terminal nodes of the same trees as a guide to the cost -
complexity compromising being struck.

3.1.2 Bagged Trees

Perhaps the simplest elaboration of CART comes from applying it within a boot-
strapping procedure. The term ‘bagging’ was created by compressing the term
‘bootstrap aggregation’ and refers to taking an average of the set of predictions
obtained from applying the same model fitting procedure to a collection of boot-
strap samples of some data. Bagged Trees are reviewed in Hastie et al. (2009)
who make the following observations regarding properties of Bagged Trees that
would be pertinent to the application this technique to data in which linear and
non-linear effects of covariates are expected to be important and collinearity is
extant among covariates. The average of many regression trees fitted to boot-
strap resamples can better approximate linear and non-linear trends in the data
than a single regression tree. This stems from how the average of many such
stepwise approximations to a linear (or non-linear) relationship, many of which
will differ slightly having been fitted to different bootstrap resamples of the
data, the will form a much better approximation to this relationship than any
of the individual constituent stepwise approximations. Collinearity among the
covariates can lead to high variance among regression trees fitted to replicate
data which bagging can smooth out in the hope of thereby obtaining a more
generally applicable model. However bagging regression trees will not improve
the bias in estimation relative to that associated with a single regression tree
fit. This improvement in prediction due to reduction in variance from bagging
comes at the cost of the interpretability of a single tree. This is occurs since
bagged regression trees are an average of the predictions of many such binary
trees that have different geometries and as such the simple binary, branching
nature of a single regression tree is sacrificed.

3.1.3 Random Forests

Like bagging, random forests [52] also involve averaging the predictions of a
set of binary tree based models such as regression trees. Furthermore, both
bagging and random forests build this set of tree based models from a set of
bootstrapped samples of the data. Random forests elaborate on bagged trees
by building ‘de-correlated’ trees. These de-correlated trees are propagated by
choosing each binary division based on a randomly selected subset of the poten-
tial covariates. Repeating this tree propagating process many times, each on a
different bootstrap resample of the data results in a set of ‘de-correlated’ trees
that are then averaged to obtain a final prediction. As such random forests share
the advantage of bagged trees over a single regression tree in that they may bet-
ter approximate linear and non-linear trends in the data while still being able
to model complex interactions between covariates. Random forests frequently
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perform synonymously to boosted trees and are easier to train and tune [48].

3.1.4 Boruta All Relevant Variable Selection

Random forests have also been taken as a starting point for further method-
ological elaborations and refinements. One such technique is Boruta all relevant
variable selection [53], hereafter BARVS (our acronym). The essence of the
BARVS method is the recursive process of fitting a random forest then as-
sessing which of the covariates utilised in this random forest made a sufficient
contribution to the predictive performance of this random forest to warrant re-
tention. The random forest is then refitted, this time using only the covariates
deemed worth retaining in the previous iteration. This process in then repeated
until a random forest is fitted in which all covariates utilised are deemed to have
made sufficient contribution to the predictive performance of the random forest
to warrant retention. Kursa et al. assess the contribution of a covariate to the
predictive performance of the random forest via a Z score (though note that
Z � N(0, 1) ). The Boruta Z score for a covariate in a particular random forest
relates to the loss of accuracy of prediction resulting from the random permu-
tation of the values of that covariate among observations. The Boruta Z score
for a covariate in a random forest is calculated from these losses of predictive
accuracy from all the constituent regression trees that utilized that covariate.
In particular, the Boruta Z score is calculated by dividing the mean of these
losses in predictive accuracy by the standard deviation of these losses (hence the
choice of name). The BARVS algorithm runs approximately as follows. Firstly,
permuted copies of all covariates currently under consideration for inclusion in
the random forest are added to this set of considered covariates and a random
forest is fitted to these composite data. The Z scores are then calculated for
all of covariates, including the permuted copies of the actual covariates. The
maximum Z score among the permuted covariates is then identified and two
sided t tests are performed to test the equality of the Z score for each actual
covariate against this maximum Z score among the permuted covariates. Next,
all actual covariates that have Z scores significantly less than this maximum Z
score among the permuted covariates are discarded from the set of considered
covariates and the current set of permuted covariates is also discarded. This
procedure is then repeated until all remaining actual covariates have Z scores
significantly greater than the maximum Z score among the permuted covariates
created at that iteration. The random forest constructed from these exclusively
relevant covariates is then retained as the final solution.

3.1.5 Boosted Trees

Boosting is a well regarded technique that may be applied to a variety of models
including binary tree based models [48]. Boosted regression trees have been in-
troduced in a manner accessible to quantitative scientists by Elith et al. (2008).
Akin to bagged trees and random forests, boosted trees incorporate a sequence
of binary trees (such as regression trees) fitted to sequentially modified versions
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of the original data, the final prediction being drawn from a combination of the
predictions of this sequence of trees. In the case of boosted trees, the sequen-
tial modifications to the original data take the form of weightings calculated
from the results of the tree fitted in the previous step. Boosted regression trees
implement a type of functional gradient descent designed to minimise a loss
function that quantifies the loss in predictive accuracy resulting from an imper-
fect model fit [54]. The first tree is fitted to the original data by maximising the
reduction in the value of the loss function relative to that from a single node
tree. The second tree is fitted to the residuals from the first tree but the pre-
dictions from this second step in the fitting process are the result of combining
the predictions first and the second tree. The third tree is then fitted to the
residuals from the combined predictions of the first and second trees and so on.
In this manner boosting sequentially focuses the model fitting on the observa-
tions that are difficult to explain. Boosting is typically conducted for as many
iterations as is computationally feasible and the final prediction from the ensem-
ble of boosted regression trees is a type of weighted average of the predictions
from all the constituent trees. Predictions from boosted regression trees have
increased stability and accuracy compared to those from a single regression tree
model. Furthermore, the introduction of some stochasticity into the boosting
algorithm via the inclusion of a bagging step can further improve the accuracy
of the predictions and mitigate the effects overfitting [55]. Boosted trees like
bagged trees and random forests involve the sacrifice of the interpretability of
a single regression tree for better predictive performance. However, a relatively
straight forward metric of covariate importance exists [56, 57] which scores co-
variates based on the frequency with which each defined a binary division and
weights these scores proportionally to the improvement in the model fit that
resulted from the inclusion of the associated division. These scores are averaged
across all the trees in the boosting sequence and the resulting scores are scaled
to sum to 100 for ease of interpretation. Unlike a single regression tree, boosted
regression trees can easily model linear relationships, non-linear relationships
and relationships that include step-like discontinuities [54]. Unlike bagged trees
and random forests, boosted regression trees reduce both the variance and bias
associated with predictions [54].

3.1.6 Cubist

Cubist (https://www.rulequest.com/cubist-info.html) fits predictive mod-
els developed from Quinlans M5 model tree method [58]. Quinlan’s M5 method
functions by creating a binary tree structure which is then pruned to reduce
tree complexity without greatly reducing the overall fit of the tree to the data.
Where this pruning converts former interior nodes of the tree into terminal
nodes by collapsing the tree structure below them, MLR models are fitted to
each of the subsets of the data thus defined. Each MLR model selects covariates
from the set of covariates that were previously used to define the tree structure
that was below (child nodes of) this current node. The Cubist method extends
the M5 method by incorporating a boosting step.
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3.1.7 Bayesian Treed Regression

The Bayesian implementation of CART [50] has been extended to fit MLR mod-
els (rather than simple intercept only models) to the subsets of the data defined
by the terminal nodes of the associated binary tree in a framework the cre-
ators dubbed Bayesian treed regression [59]. One motivation for such a model
formulation being the scenario whereby different covariates are most useful for
predicting the response in different subsets of the data. The end result is some-
what akin to C5 model trees [58] but the method of attaining such a fit is very
different, the model being formulated under the Bayesian paradigm. Much like
Bayesian CART, Bayesian treed regression utilises an implicitly specified tree
prior and a stochastic search. The Bayesian formulation and stochastic search
enable different tree geometries and MLR models in the terminal nodes of these
trees to be explored in addition to different error variances to be modelled for
each terminal node. The particulars of the model formulation are as follows.
For each terminal node of the tree T , the response observations, Y , that are
members of this node are assigned a parametric model. In this manner there
is a separate parametric model for the response observations contained in each
of the unique terminal nodes of the tree. In particular, the distribution of the
elements of the response vector Y that are members of the ith terminal node
of the tree T are modeled conditional upon the associated covariate values by
the parametric model Y |x ∼ f(y|x, θi) where Θ = (θ1, ..., θb). This contrasts
with a Bayesian CART where the distributions of the response observations in
each terminal node are not modeled as conditional upon the associated obser-
vations of the covariates x there. Where CART and Bayesian CART models
utilise a collection of stepwise functions to approximate correlations between
the response and the covariates via the binary tree structure Treed regressions
may be thought of as a collection of piecewise MLR models. As such Bayesian
treed regression models would model linear or non-linear relationships between
covariates and the response much more parsimoniously than Bayesian CART
models as Bayesian treed models have the facility to invoke MLR in the termi-
nal nodes. This facilitates the transfer of complexity in Bayesian treed models
from the tree geometry to the terminal node MLR models. As such, one may
reasonably expect shallower more readily intelligible trees to be coupled with
the terminal node MLR models in Bayesian treed regression as compared to the
more deeper, less readily intelligible trees that are coupled with terminal node
single parameter models in Bayesian CART. This may be thought of as the bi-
nary tree component of the Bayesian treed models capturing the major subsets
of the data and the associated MLR models describing the nuances thereof.

Each fit of a Bayesian treed model is uniquely defined by (Θ, T ) and Chip-
man et al. (2002) outline how the posterior distribution of these (Θ, T ) may be
explored via stochastic search with the aid of a Metropolis Hastings algorithm.
As with their Bayesian CART, Chipman et al. (2002) recommend comparing
the fits to which multiple restarts of the stochastic search converge so as to
better explore the posterior rather than running a single stochastic search for
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a long time. They make this recommendation in light of the noted tendency
of their MH explorations to converge on local maxima in the posterior then
explore the vicinity of that maxima for many iterations. Chipman et al. (2002)
note that their approach is amendable to both Bayesian model selection, should
a single model be desired, and Bayesian model averaging (e.g. by posterior
or likelihood weighting of the iterations of the stochastic search) should better
predictive performance be desired. When model averaging is elected, Chipman
et al. suggest model averaging only the better fitting models.

3.2 An Introduction to the Multiple Linear Regression
Based Models Considered this Work

Multiple Linear Regression (MLR) predicts observations of the response yi, i =
1, ..., n, from a linear combination of products of observations of the covariates
xi,j , j = 1, ..., p, and the associated coefficient estimates β̂j plus an intercept

term β̂0 as per Equation 7:

ŷi = β̂0 +

p∑
j=1

β̂jxi,j (7)

In MLR, non-linear effects of covariates upon the response may be modelled
via inclusion of additional covariate terms formed as single term polynomials
constructed from the original covariates. Interactions between covariates in
their effects upon the response may be modelled via including in the regres-
sion additional covariate terms constructed by taking products of the covariates
constituent to the interaction in question.

3.2.1 MLR Maximum Likelihood

When a MLR model is fitted by ordinary least squares (OLS) likelihood max-
imisation the vector of coefficient estimates β̂ is obtained from the design matrix
X as per Equation 8.

β̂ =
(
XTX

)−1
XTy (8)

As such ordinary least squares cannot estimate MLR fits for scenarios where
the number of covariates, p, exceeds the number of observations, n, (the p > n
or ultrahigh dimensional scenario). Even in situations where the number of
covariates is less than the number of observations, consideration of non-linear
terms for each covariate and the

(
p
k

)
possible order k interaction terms can lead

to the number of considered covariate terms grossly exceeding the number of
observations and OLS fitting no longer being possible. Furthermore, fitting
MLR by OLS is ill advised when collinearity exists among the covariates [60].

3.2.2 MLR with Information Criterion Based Variable Selection

When the number of covariate terms desired to be considered for use in predict-
ing the response exceeds the number of observations, OLS is often incorporated

23



into a model comparison framework that fits and compares numerous models
that utilise subsets of the available covariates such that p < n. This comparison
is often effected via an information criterion such as the Akaike Information Cri-
terion (AIC) [61, 62, 63] which assigns models a score that rewards goodness of
fit to the data while penalizing model complexity. Where it is computationally
feasible to do so all possible models that may be constructed from a particular
set of covariates with a particular number of observations may be fitted via an
exhaustive search procedure and compared, for instance in terms of information
criterion values. Where the computational burden of an exhaustive search is
deemed too great, a popular choice is to adopt some greedy algorithm based ap-
proach to search for optima in the information criterion values that accompany
the set of possible models without having to fit all these models. Stepwise vari-
able selection methods are examples of such techniques. It should be noted that
in their base forms both stepwise variable selection and exhaustive searches still
utilise OLS fitting procedures and as such are both ill advised in the presence
of collinearity among the covariates.

3.2.3 MLR Bayesian

The Bayesian approach may also be used to fit MLR models (see for example
Gelman et al. 2004). Furthermore, the Bayesian framework may be used to
accomplish variable selection under the ultrahigh dimensional scenario by cre-
ating prior distributions that give each regression coefficient a high probability
of being zero [64] as performed in the Bayesian variable selection method Spike
and Slab priors [65, 66, 67]. A simple Bayesian formulation of an MLR with
independent and non-informative priors on all coefficients may be adversely af-
fected by collinearity among covariates. Collinearity among covariates will lead
to high posterior variance of the associated coefficient estimates [64] and sub-
sequently slow Markov Chain Monte Carlo convergence. Bayesian analogues
to shrinkage techniques for mitigating the undesirable effects of modeling with
data that includes collinearity among the covariates are outlined along side their
penalized likelihood based counterparts in the following section.

3.2.4 MLR Penalization / Shrinkage

One of the dangers when conducting MLR based modelling with covariates
among which collinearity exists is that highly correlated pairs of covariates can
be assigned arbitrarily large magnitude positive and negative coefficients that
effectively negate each other. One action that may be taken to mitigate or at
least control this effect is to impose a penalty upon the combined magnitude
of the coefficients as part of the fitting process [48]. A simple choice for such
penalty functions is to take the Lγ norm of the regression coefficient vector β,

for some value of γ, and search for the β̂ that minimizes the sum of the residual
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sum of squares and this norm of the regression coefficients as per Equation 9.

β̂Lγ = arg min
β
{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |γ}, γ > 0 (9)

Solving Equation 9 with γ = 2 yields a Ridge Regression estimate equivalent to
that obtained by solving Equation 10.

β̂ridge = arg min
β
{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j } (10)

Ridge regression shrinks all coefficients towards zero and thus does not perform
variable selection and is not useful for regression in the ultrahigh dimensional
situation. Interestingly, ridge regression is equivalent to Bayesian MLR with
an exchangeable normal prior distribution on the coefficients [64]. Using γ = 1
in Equation 9 yields an L1 penalized least squares estimate also known as the
Least Absolute Shrinkage and Selection Operator (LASSO) [68]. More complex
choices for the penalty function than the Lγ norm in Equation 9 are used in pe-
nalized least squares techniques such as adaptive LASSO [69], Smoothly Clipped
Absolute Deviation (SCAD) [70] and Minimax Concave Penalty (MCP) [71].
Of these techniques Lγ penalization is perhaps the most easily applied. Solv-
ing Equation 9 for any γ < 2, will shrink the coefficient estimates for some
covariates to zero exactly (how many depends on value of tuning parameter λ)
thereby performing variable selection in addition to penalized estimation [72].
As such Lγ penalized estimation with γ < 2 is applicable in scenarios where
where the number of potential covariates exceeds the number of observations
(p > n) and collinearity exists among the covariates. The absolute value in an
L1 penalized estimate requires a computational solution initially provided by
quadratic programming [68] and more recently by the more computationally ef-
ficient Least Angle Regression (LAR) algorithm [73]. An estimate of the LASSO
solution may also be obtained from the posterior mode estimates of a Bayesian
MLR with independent and identical, Laplace (double exponential) priors on
the regression coefficients [74].

3.3 Comparing Multiple Linear Regression Based Tech-
niques and Binary Tree Based Technique

The comparison of the properties of Multiple Linear Regression (MLR) and
Classification And Regression Tree (CART) has most relevance to this work
as a foundation to inform the comparison of the various modifications of each
technique that would have better suited the coupling of the particular character-
istics of the data from our case study and our objective for the analysis of these
data. We consider the defining characteristics of our case study data to be: (1)
more potential covariate terms than observations (the p > n or ultrahigh dimen-
sional situation for variable selection) (2) a high degree of collinearity among
the potential covariate terms and (3) suspected importance of non-linear effects
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of covariates and interactions of covariate effects. The primary objective with
our case study analysis was the construction of a model for covariate assisted
interpolation of the response. Our case study also had the additional context of
the modest computational resources provided by one mid-range laptop and our
desire for an easily interpretable predictive mechanism.

A plethora of BT based approaches exist today that are variously modifica-
tions of and elaborations upon the Classification And Regression Trees [47]
(hereafter CART) framework. We confine ourselves here to considering a sub-
set of these that appeared appropriate for the case study data and objectives
namely: Bayesian CART [50], bagged regression trees [75], random forests [52],
boruta all relevant variable selection [53] (an elaboration upon random forests),
boosted regression trees [55], cubist [58] and Bayesian treed regression [59] (an
elaboration upon Bayesian CART). Readers unfamiliar with these BT based
techniques are referred to Section 3.1. A similar diversity of modifications to
and elaborations upon MLR exist though we confine ourselves here to con-
sidering the base form and the modification thereof that seem appropriate to
the defining features of our case study data. Namely, we consider shrinkage
modified MLR for its relevance to the situation where collinearity exists among
the covariates with particular attention to LASSO style shrinkage for its ad-
ditional relevance to the situation where the number of covariates exceeds the
number of observations of the response (see Section 3.2 for an introduction to
these techniques). We consider both LASSO for MLR fitted under the Bayesian
paradigm [74] and LASSO implemented through likelihood penalization as fit-
ted by the LAR algorithm [73]. We consider each of these techniques in light
of the key characteristics of our case study data and our objective of building a
model to interpolate the response. This allows us to narrow down the choice of
methods further and make a final decision. This comparison is also summarised
in Table 5.

We commence this consideration with perhaps the most widely know technique
introduced above, MLR. A MLR model cannot be fitted by Ordinary Least
Squares (OLS) based likelihood maximisation when the number of covariates
desired to be included in the model exceeds the number of observations (see
Section 3.2). The large number of potential covariate terms and suspected im-
portance of non-linear effects and interactions of covariate effects meant that
conducting exhaustive search variable selection on these data was not compu-
tationally feasible. Under such scenarios, a common option has been to apply
some deterministic variable selection procedure that optimises an information
criterion. Stepwise variable selection with the Akaike Information Criterion
(AIC) [61, 62, 63] has been a popular choice in this regard having been avail-
able in R via the step function [11] through numerous release cycles. However,
with linear regression, correlations between potential covariates (as we had in
our case study data, see Fig. 2) can be a cause for concern with such tech-
niques that rely on ordinary least squares model fitting (which in the case of
linear regression is also maximum likelihood model fitting). The undesirable
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effects of correlations among covariates in a MLR model have been explained
in the comprehensive book [60]. While Bayesian methods would allow a MLR
model to be fitted with more covariates than observations the high degree of
collinearity among some pairs of covariates would render the associated pairs
of coefficients poorly defined which in turn could complicate convergence of
the MCMC iterations upon a fit to these data. In the presence of collinear-
ity among covariates some form of shrinkage is advisable for preventing highly
correlated covariates being assigned arbitrarily large magnitude but opposite
signed coefficients that all but cancel each other out due to the high correlation
of the associated covariates. Coefficient shrinkage is performed by the popular
Penalized Least Squares (PLS) family of techniques [72] which forms a subset
of the larger family of coefficient shrinkage themed modifications of MLR. We
considered shrinkage techniques including Ridge regression [76], LASSO [68],
LASSO fitted by LAR [73] and the Bayesian LASSO [74]. Of particular inter-
est were both LASSO for MLR fitted under the Bayesian paradigm [74] and
LASSO implemented through likelihood penalization as fitted by the LAR algo-
rithm [73] since LASSO is appropriate to both the situation where the number
of covariates exceeds the number of observations and the situation where sub-
stantial collinearity exists among the covariates. LASSO conducts shrinkage in
a manner that shrinks some coefficients to zero exactly which in effect excludes
them from the model and as such is useful for conducting shrinkage and variable
selection simultaneously. A LASSO modified MLR fit may be obtained via the
deterministic and computationally efficient LAR algorithm [73] which adds or
removes the covariate that best optimises its criteria at each iteration. Alterna-
tively, a LASSO modified MLR estimate may be obtained by fitting a Bayesian
MLR with independent and identical Laplace priors on all the coefficients [74].
Such an exploration, utilising multiple MCMC chains with a variety of starting
values, could well conduct a more thorough exploration of the possible LASSO
fits of MLR models that could be constructed from the potential covariates
than would be conducted by the deterministic LAR algorithm. Though we note
that were non-linear effects and all possible pairwise interactions considered
as potential covariate terms, the computational burden involved in obtaining
convergence of all chains could be considerable simply due to the number of
coefficients to be estimated.

In contrast to MLR, CART may be run in its base form on ultrahigh dimen-
sional data given sufficient computational resources. With more covariates than
observations it would be vital to enforce a minimum number of observations
per terminal node at which to commence pruning but if this were done there
would be no a priori barrier to the implementation of this technique on such
data. Were CART models being fitted within the Bayesian paradigm the tree
prior would need to be parameterised to perform a similar function guiding the
posterior away from deep trees with low numbers of observations per terminal
node. Furthermore, the collinearity present among covariates would not prove a
barrier to the implementation of CART (here regression trees as we have a con-
tinuous response) via the standard algorithms as even small differences among
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covariates would be sufficient for one covariate to define a binary partition of
the response that reduces some loss metric more than the other covariate. The
63 covariates of our case study analysis, while not prohibitively excessive, would
likely lead to some computational burden when fitting Bayesian CART models
to these data as the stochastic searches necessary may take many iterations to
converge. We postulate this slow convergence due to the collinearity among
some covariates and also due to the number of covariates considered. Given
the tendency of Bayesian CART to converge upon a local maxima and remain
there moving locally for many MCMC iterations thereafter [50] the greater the
number of chains with a diversity of starting trees that could be run the greater
the conviction one could have that a good enough exploration of the posterior
had been conducted to have at least identified some trees that were more than
just local maxima of extremely small regions of the posterior. As such a good
case exists for devoting significant computational resources to fitting Bayesian
CART. Suspected interactions of covariates and non-linear effects of covariates
upon the response are a more interesting issue in the context of regression trees.
Regression trees by their nature can model complex interactions between covari-
ates and this is a strength they possess relative to MLR. However, as a single
regression tree is essentially a collection of stepwise predictions for the response
across mutually exclusive partitions of covariate space, deep trees will be neces-
sary to approximate even a simple linear relationship between a covariates and
the response well. The limited number of response observations available in our
case study and large number of covariates of which several or more may well
have non-linear relationships with the response means that trees of sufficient
depth to describe multiple non-linear relationships would not be possible with
sufficient observations in each terminal node to formulate reliable estimates of
the response means there. Subsequently, some form of averaging of multiple
trees would be advisable as the average of many slightly different stepwise func-
tions can well approximate a linear or non-linear relationship even when the
constituent binary trees are quite shallow. The trees thus averaged could be the
trees that scored above some threshold posterior probability or trees fitted to
multiple re-samples or re-weightings of the full set of observations.

Fitting regression trees to numerous bootstrap re-samples of the data would
be the simplest option for generating multiple regression trees to model average
in order construct better approximations to linear and non-linear relationships
between covariates and the response than would be possible with a single binary
tree. This technique is referred to as bootstrap aggregated trees or bagged trees
for short [75]. Furthermore, averaging the predictions from numerous shallow
trees each fitted to a different bootstrap re-sample of the data could also allow
the various linear and non-linear relationships between different covariates and
the response to be incorporated into the model despite the small sample size.
If different covariates were most important to different subsets of the response,
different trees could result from fitting a regression tree to each bootstrap re-
sample and thus this diversity of relationships could be incorporated into the
bootstrap aggregation. In this manner, even though the response sample size
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limits the depths of trees possible, numerous linear and non-linear relationships
between covariates and the response could be incorporated into the predictions
through the different shallow trees constituent to the model averaging. As such,
bagged trees could incorporate approximations of far more linear and non-linear
relationships into predictions of the response than it would be possible to utilise
via a single binary tree fitted to the same data. As predictions from bagged trees
are constructed from the predictions of numerous individual regression trees the
same ability to operate on data with high collinearity among the covariates
exists for bagged regression trees as does for single regression trees. Similarly,
bagged regression trees retain and even enhance the strength of single regression
trees at modelling complex interactions between covariates upon their effect on
the response. However, these advantages come at the cost of the easily inter-
pretable structure of a single regression tree. Much the same assertions may be
made for random forests.

Random forests [52], like bagged trees, model average predictions from a set
of regression trees derived from bootstrap re-samples of the data and thus have
similar advantages to bagged trees over single regression trees at approximating
linear and non-linear relationships between covariates and the response. Ran-
dom forests differ from bagged trees in the manner in which regression trees
are fitted to the bootstrap re-sample of the data. At each binary partition in
such a tree in a random forest, only a randomly selected subset of the potential
covariates are made available to the algorithm to define the binary partition.
Random forests may be better than bagged trees at approximating different lin-
ear and non-linear relationships between the covariates and the response with
a limited number of observations due to the combination of bootstrapping and
selecting from random subsets of covariates at each partition resulting in an
broader range of shallow trees to aggregate than bootstrapping alone. Ran-
dom forests, being composed of many individual regression trees, should not be
adversely affected by collinearity among covariates and should still be able to
model complex interactions.

Boruta all relevant variable selection [53] is an elaboration of the random for-
est method. As such, it shares the advantages of bagged trees and random
forests over single regression trees for approximating linear and non-linear re-
lationships between covariates and the response and, like all binary tree based
methods, is able to model complex interactions among covariates in their effects
upon the response. However, collinearity among the covariates may pose a prob-
lem for the application of boruta all relevant variable selection. The problem
stems from the boruta algorithm being vulnerable to discarding useful covariates
when these covariates are highly correlated with one or more other covariates.
If highly correlated covariates were supplied to a random forest algorithm and
these covariates contained useful information for predicting the response these
covariates could well be used interchangeably throughout particular regression
trees for defining binary partitions of the response. Thus the loss in predictive
accuracy that would result from permuting the values of just one of these cor-
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related covariates and using it in place of the actual covariate would likely be
less than would result if this particular covariate had been used in all binary
partitions of the tree where the partition was defined based on one of the other
covariates with which this covariate was highly correlated. Subsequently, the
importance of this particular covariate to the predictive accuracy of the regres-
sion tree could be underestimated to the extent that the Boruta all relevant
variable selection algorithm would discard this covariate from the set of covari-
ates worth retaining. Furthermore, if the correlated covariates in question were
sufficiently correlated that they were being used interchangeably throughout
the regression tree then they could all dilute the estimated importance of the
others in this manner such that none of these correlated covariates were selected
for retention by the boruta all relevant variable selection algorithm despite all
containing much the same important information for predicting the response
and thus it being well worth retaining one of them.

Boosting iteratively refits a model to data that is re-weighted at each itera-
tion to emphasize the observations that were poorly predicted by the model
fitted in the previous iteration. The predictions from this sequence of models
are then combined to produce the final prediction. Where these models are re-
gression trees the procedure is referred to as boosted regression trees [55]. Thus
the predictions constructed from a sequence of boosted regression trees will have
similar advantages to those from bagged trees and random forests over a those
from a single regression tree model. Such aggregated predictions will better
approximate linear and non-linear relationships than the predictions from a sin-
gle shallow regression tree given the small number of response observations and
numerous potential non-linear and interacting effects of covariates expected to
exist in our data. Furthermore, by its very nature boosting will produce a vari-
ety of trees each fitted to re-weightings of the data which emphasize a different
subset of the response observations. Thus, where the small sample size would
hinder a single regression tree capturing the suspected importance of multiple
non-linear relationships between covariates and the response, different trees in
the sequence of boosted trees will describe different relationships between co-
variates and the response that are found to be important to observations up
weighted at that iteration. Since the ensuing predictions from all such trees will
then be aggregated to produce the final predictions all these different identi-
fied relationships will be combined into the predictions of the response. Again,
similar to the above approaches that aggregate sequences of regression trees to
produce predictions, collinearity among the covariates should not greatly hin-
der the regression tree fitting process constituent to fitting boosted regression
trees as differences will exist among even quite collinear covariates sufficient to
choose between them when they are useful for defining a binary partition of
the response. Furthermore, still being based on binary trees, boosted regression
trees will be able to model complex interactions between covariates in their re-
lationships with the response.

The cubist method https://www.rulequest.com/cubist-info.html is in essence
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an extension of the M5 or model tree approach [58] that incorporates a boost-
ing step. As such the model that is fitted to the iteratively re-weighted data
at each iteration of the boosting algorithm starts as a regression tree which is
then iteratively pruned back by collapsing parent nodes to the current termi-
nal nodes and fitting MLR models to the subsets of the data defined by these
newly created terminal nodes. Each MLR model fitted to the data contained
in a newly created terminal node uses as potential covariates all the covariates
that defined the binary partitions that were collapsed to create this new ter-
minal node. As such, collinearity among the covariates could lead to poorly
defined coefficients in these terminal node MLRs as discussed above (assuming
these covariates were also collinear in the subset of observations contained the
terminal node in question) unless some shrinkage based fitting was conducted
there. This model structure would allow for very flexible description of linear
and non-linear relationships between covariates and the response as not only are
different stepwise predictions being averaged but constituent in this averaging
are also the predictions for various MLR fits. Similarly, being based upon a
binary tree structure complex interactions may be modeled implicitly by this
method.

Bayesian treed regression [59] is superficially similar to Quinlan’s M5 in that it
fits MLR models to subsets of the data contained in the terminal nodes of a
binary tree. Bayesian Treed Regression, however, is fitted under the Bayesian
paradigm via stochastic search as an elaboration of a Bayesian CART model [50].
The intricate model structures permitted by fitting MLR models in the termi-
nal nodes of binary trees is attractive for data in which complex combinations
of linear, non-linear and interaction effects of covariates upon the response are
suspected to be important. Some form of shrinkage would be advisable in the
terminal nodes to mitigate the concerns of conducting MLR with collinear co-
variates. As has been discussed above LASSO may be implemented within the
Bayesian framework by placing Laplace priors on the regression coefficients [74].
Our greatest concern associated with this method would be the computational
burden inherent in conducting a good exploration of the posterior. Collinear-
ity among covariates would slow the convergence of stochastic searches and the
shear breadth of possible models would require numerous chains to be run with
a great variety of starting values in order to have any confidence whatsoever
that a good exploration of the posterior had been conducted given the noted
tendency of this algorithm to rapidly converge on local maxima in the posterior
then remain in the neighbourhood of this maxima for many subsequent MCMC
iterations [59, 50]. The number of parameters in the stochastic search could be
reduced if one were willing to let the binary tree portion of the model be the
only form of allowing for potential interactions of covariates (i.e. consideration
of the

(
63
2

)
pairwise interaction terms in the MLR models could then be avoided).

Further reduction in the number of parameters in the stochastic search could
be achieved by only allowing linear terms for each covariates in the terminal
node MLRs and relying on model averaging of high posterior probability fits
to account for non-linear effects through the averaging of the predictions from
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multiple combinations of stepwise functions with MLR fits. Such an approach
coupled with a tree prior parameterised to avoid deep binary trees would allow
for a rich variety of linear, non-linear and interactions effects to be incorporated
into the aggregated predictions.

Of the techniques considered, LASSO penalized MLR fitted via the LAR al-
gorithm, random forests and boosted trees are here proposed as the techniques
that were most suitable for our case study analysis (see Table 5). These three
techniques: were appropriate for application to data with characteristics like
those of our case study, suited our objective of building models to interpolate
the response, were straight forward to implement with existing software and
seemed unlikely to be adversely computationally burdensome with the com-
putational resources available. Model-averaging of high posterior probability
regression trees identified via the Bayesian CART method also appeared quite
well suited to data and objectives like ours but would have required more effort
to implement (tree priors require some work to parameterise so as to emphasize
tree structures that maintain a minimum number of observations in all terminal
nodes) and could well have proved quite computationally expensive with the
computational resources available. Model-averaging of high posterior probabil-
ity fits from Bayesian treed regression also appeared very promising for data
and objectives like ours provided some form of shrinkage could be implemented
in the terminal node MLRs and the 63 covariates were considered only as linear
main effects. However, we note that the implementation of shrinkage in the ter-
minal nodes would not be a trivial task and that both these techniques seemed
likely to be quite computationally intensive with data like ours. The choice of
an easily implemented technique that was appropriate to our data and compu-
tationally efficient was thus reduced to a choice between LASSO penalized MLR
fitted via the LAR algorithm, random forests and boosted trees.

We have elected to use LASSO modified MLR fitted via the LAR algorithm in
our case study analysis. Model-averaging the predictions from the LASSO solu-
tions obtained from LAR executions within a cross validations scheme yielded an
aggregate estimate in a manner conceptually similar to the manners in which
random forests, bagged trees or boosted trees aggregate predictions from the
same model structure fitted to variations on the same data set. Another useful
consequence of using a cross validation based approach was that we were able
to estimate the shrinkage parameter for the LASSO fits (λ in Equation 9) via
cross validation. The motivation for this approach was an attempt to fit models
that would perform well at interpolation. For the purposes of building mod-
els for interpolation, LASSO modified MLR fitted via the LAR algorithm was
a defensible choice of method from a set of good options. Our preference for
LASSO modified MLR fitted via LAR was the result of a secondary interest in
which non-linear terms for covariates and which particular pairwise interactions
were most useful for predicting the response. This was more readily apparent
from LASSO modified MLR fits where each covariate term has a coefficient
that has been either shrunk to zero, effectively excluding the covariate term
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from the model, or assigned a value. When employed within a cross validation
scheme this translated into frequencies of selection of these specific covariate
terms which were still easy to interpret. In contrast, whether the overall role
of a covariate within the aggregated estimate from random forests, bagged or
boosted trees was closer to linear or non-linear (and if non-linear what manner
of non-linear) would have been harder to judge from the results of such a fit.
This ease of interpretability of the LASSO modified MLR came at a cost of
having to recenter and rescale (to mean zero and magnitude one) all covariates
in each training each set (a requirement of the LAR algorithm [73]) and mirror
those transformations on each associated validation set whereas this would not
have been necessary for binary tree based techniques.
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4 Appendix D: Design Matrix Filtering

It was apparent from the correlation matrix presented as the raster plot in Fig.
2 that substantial collinearity existed among the 2205 potential covariate terms.
We wished to create subsets of the full design matrix in order to explore less
collinear sets of potential covariates for two reasons. Firstly, exploring design
matrices which included highly collinear pairs of covariates seemed unnecessary.
This was because a variable selection algorithm would have selected a covariate
from each highly correlated pair of covariates on the basis of minute differences
between the covariate values at the locations at which the response was ob-
served and thus this decision could have been adversely influenced by errors in
measurement or interpolation. Secondly, the variable selection functions in the
version of the ‘leaps’ package [77] we used required that the design matrices
explored included no pairs of covariates with correlations coefficient magnitudes
greater than 0.4.

The covariates derived from the All Terrain Vehicle (ATV) surveys had the
finest spatial resolution of all the covariates considered in our case study. In an
effort to build models that would have predicted the response with the greatest
spatial accuracy, when faced with highly correlated pairs of covariates we chose
to retain the covariates collected by the ATV surveys over any others. Of the
ATV survey derived covariates: visible Red reflectance (RED), Near InfraRed
reflectance (NIR) and soil apparent electrical conductivity (ECA) only ECA
had no other covariate terms derived from it while all the vegetation indices
were calculated as functions of the RED and NIR reflectance values. For this
reason ECA was retained over NIR, RED and any other highly correlated co-
variate term. As the vegetation indices were theoretically more indicative of
green biomass than raw RED or NIR reflectance, and thus potentially more
closely related to SOC levels (see Appendix B), vegetation indices were retained
over the raw reflectance values were any such pairs overly correlated. Next in
the order of detail of spatial resolution were the Foliar Projective Cover (FPC)
Layers. We obtained two data such layers: the projected foliage cover for 2011
(FPCI) and the projected foliage cover for 2012 (FPCII). Since 2011 was less
temporally removed from the 2009 soil survey than 2012, FPCI was set to be
preferentially retained over FPCII or any other highly correlated covariates. The
coarsest spatial resolution data were derived from the Digital Elevation Model
(DEM). These data included elevation along with terrain and soil hydrology
metrics calculated from the elevation. We considered that these terrain and soil
hydrology metrics came closer to describing landscape processes that may have
influenced SOC formation, mineralization and or transport and thus the spatial
distribution of SOC levels. Subsequently, we elected to retain terrain and hy-
drology metrics over elevation should elevation have been highly correlated with
any of these metrics. Any remaining pairs of highly correlated covariates were
then chosen between at random. Once this hierarchy of filtering operations had
been applied to the 63 potential covariate terms the remainder was expanded
to include all remaining covariate terms to polynomial order four and all pos-
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Figure 2: A plot of the matrix depicting the correlation coefficients between all
possible pairs of the 2205 potential covariates terms.

sible interactions between pairs of linear terms for these remaining covariates.
In the spirit of Occam’s razor when searching the expanded design matrix for
correlated pairs of covariate terms, single term polynomial terms were set to
be retained in preference to any interaction terms with which they were found
to be highly correlated. Finally, lower order polynomial terms were set to be
retained in preference to any higher order polynomial terms with which they
were highly correlated. Once all the above heuristics had been implemented in
the order described a selection was made from any remaining pairs of highly
correlated covariates at random to complete the enforcement of a maximum
permitted correlation coefficient magnitude between covariates in the filtered
design matrix.
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5 Appendix E: Choice of Training Set Size and
Design Matrix Filtering Austerity

We compared the results of using three different pairs of training and validation
set sizes combined with each of four different levels of austerity in the design
matrix filtering repeating the variable selection and model-averaging routine
for each. The training set sizes compared were 35, 45 and 55. Sets of 500
unique training sets of each of these sizes were constructed from design ma-
trices filtered to enforce maximum correlation coefficient magnitudes between
remaining covariate pairs of 0.95, 0.8, 0.6 and 0.4. Given our primary objective
of interpolating the response between the soil core observations our focus was
on out of sample predictive accuracy. The metrics for out of sample predic-
tion accuracy we adopted were the summary statistics for the distributions of
the Validation Set Element Prediction Error (VSEPE) absolute values. The
distributions of the absolute values of the VSEPE and the coefficients of de-
termination for the model-averaged predictions from models selected from each
of these combinations of training set size and design matrix filtering austerity
have been summarized in Table 5. For each level of austerity in filtering the
design matrix the distribution of the absolute values of the VSEPE appeared to
become more compressed towards zero with increasing training set size. How-
ever, it should be noted that the number of validation set elements that were
predicted under the scenarios where 500 training sets of 35 observations were
used was much larger compared to the number predicted under scenarios where
500 training sets of 55 observations were used (500 ∗ (60 − 35) compared too
500 ∗ (60− 55)). As such we only recommend comparing the VSEPE distribu-
tions obtained from each of the four collections of 500 training sets of the same
size that were constructed from design matrices subjected to different the levels
of filtering austerity considered.

The final model for each training set was selected from the sequence of mod-
els for that training set returned by the LAR algorithm as the model which
maximised the predictive accuracy on the associated validation set. As the 35
observation training sets were the smallest of the three sizes of training sets
considered, the models selected for these training sets would have had out of
sample predictive accuracy most emphasised in this second stage of their selec-
tion process where the shrinkage parameter was selected to minimise validation
set predictive error. Since areal interpolation of the response from full cover
covariate observations via these models selected by LAR is in essence out of
sample prediction, we elected to use the results of variable selection on one of
the collections of 500 unique 35 observation training sets for this areal interpo-
lation. Of the models selected from the collections of 500 training sets of 35
observations it was those constructed from the design matrix filtered to enforce
a maximum permitted correlation coefficient magnitude between covariate pairs
of 0.95 that had the first three quarters of the ordered VSEPE absolute values
most compressed towards zero. Furthermore, of the scenarios involving 35 obser-
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Table 5: Summary statistics for validation set element prediction error distribu-
tions and coefficients of determination for model-averaged predictions from each
application of Least Angle Regression to a scenario defined by the combination
of training set size and design matrix filtering austerity.

VSEPE MAP
> |r| TSS Min. 1st Qu. Median Mean 3rd Qu. Max. R2

0.95 35 1.332e-05 0.1482 0.3184 0.4744 0.5446 4.437 0.5963
0.95 45 5.418e-05 0.1384 0.3067 0.4667 0.5410 4.163 0.6797
0.95 55 3.734e-05 0.1113 0.2656 0.4065 0.4525 3.858 0.8403
0.8 35 5.571e-05 0.1526 0.3288 0.4835 0.5636 4.167 0.4667
0.8 45 5.746e-05 0.1462 0.3204 0.4762 0.5583 4.112 0.5046
0.8 55 0.0002129 0.1163 0.2916 0.4220 0.5026 3.885 0.6284
0.6 35 1.119e-05 0.1495 0.3362 0.4957 0.5769 4.206 0.2796
0.6 45 0.0002723 0.1527 0.3426 0.5065 0.5916 4.184 0.3844
0.6 55 3.376e-05 0.1300 0.2914 0.4193 0.5232 3.875 0.4994
0.4 35 1.097e-05 0.1517 0.3324 0.4776 0.5695 4.063 0.3666
0.4 45 0.0003481 0.1564 0.3333 0.4760 0.5662 3.819 0.4507
0.4 55 7.387e-05 0.1101 0.2388 0.3626 0.4126 3.684 0.5593
Abbreviations:
TSS = Training Set Size,
VSEPE = Validation Set Element Prediction Error,
MAP = Model-Averaged Prediction,
> |r| = the maximum absolute value of the correlation coefficient between
covariate pairs permitted to remain in the design matrices supplied to the
variable selection algorithms,
R2 = the coefficient of determination,
Min. = Minimum,
1st Qu. = First Quartile,
3rd Qu. = Third Quartile,
Max. = Maximum.

vation training sets it was the model-averaged prediction from the models fitted
to the 500 training sets constructed from the design matrix filtered to enforce a
maximum permitted correlation coefficient between covariates of 0.95 that had
the best coefficient of determination. For these reasons, we elected to inter-
polate the response across the study area with the model-averaged predictions
from the models selected by applying LAR to the 35 observation training sets
constructed from the design matrix filtered to enforce a maximum permitted
correlation coefficient magnitude between remaining covariate pairs of 0.95.
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