Detailed Microbiology Materials and Methods

Pathogen identification

Whole Stool Collection and Nucleic Acid Purification

For each enrolled subject providing a stool specimen, between 1-5 milliliters (mL, liquid) or grams (solid) of stool were collected and aliquoted into a sterile, leak-proof, 20-mL vial for (RT)-PCR-based analysis of enteric pathogens. Vials were stored on-board at -70 °C and were shipped to NHRC on dry ice. Stool samples were diluted to a 20% solution with phosphate-buffered saline (lacking Ca²⁺/Mg²⁺, Lonza, Walkersville, MD) and were subjected to RNA or DNA extraction using the Qiagen QIAamp Viral RNA Mini Kit or the QIAamp Fast DNA Stool Mini Kit (Qiagen, Valencia, CA). Purified nucleic acids were eluted into nuclease-free centrifuge tubes and stored at -80 °C along with the clinical samples.

NoV real-time, multiplex RT-PCR

Total RNAs were subjected to a one-step, real-time, TaqMan®, RT-PCR assay to detect norovirus genogroup (G)I and GII as stipulated by the CDC CaliciNet program.¹ Total reaction volumes of 25-microliters (μ L) contained the AgPath-IDTM One-Step RT-PCR Kit reagents per manufacturer's instructions (Life Technologies, Grand Island, NY) with final concentrations of additional reagents as follows: 0.4 micromolar (μ M) Cog1 and Cog2 primers; 0.8 μ M RNP primers; 0.2 μ M probes (IDT, Coralville, IA); and 0.5-2.0 micrograms (μ g) (or 2.5 microliter [μ L]) RNA. Thermal cycling parameters were as follows: 1 cycle at 45 °C for 10 minutes (min); 1 cycle at 95 °C for 10 min; and 45 cycles at 95 °C for 15 sec and 60 °C for 1 min. All samples were run in duplicate. The CDC protocol was modified by the EDSP to include an endogenous internal amplification control (IAC) for each sample (human RNase P, see all primer sequences and final concentrations in **Supplemental Table 1**). Positive (norovirus GI and GII RNAs) and negative (water) controls were included on every plate. All real-time PCR assays described herein were performed and analyzed using the Applied Biosystems 7500 Fast Dx Real-time PCR system and associated SDS v1.4 software (Thermo-Fisher, Waltham, MA).

Enteric viruses conventional multiplex RT-PCR

The EDSP's enteric viruses conventional, multiplex RT-PCR assay was based on that published by Khamrin P et al. but modified to include only astrovirus, groups A and C rotavirus, sapovirus, and adenovirus.² Additionally, an exogenous, spike-in GFP IAC was added to the PCR master mix. RT was performed in 20- μ L volumes using the Qiagen OmniScript RT kit with final reagent concentrations as follows: 0.5 mM dNTPs; 0.6 μ M adenovirus, astrovirus, groups A and C rotavirus, and sapovirus primers; 0.5 Ū/ μ L RNase Inhibitor; 0.2 Ū/ μ L RT enzyme; and 0.5-2.0 μ g (9 μ L) RNA. RT was carried out for 1 hour at 50 °C, followed by five min. at 95 °C and then immediately placed on ice or stored at -80 °C. DNA amplification was also performed in 20- μ L volumes using the Qiagen HotStar Taq Plus Master Mix Kit with final reagent concentrations as follows: 0.6 μ M adenovirus, astrovirus, groups A and C rotavirus, and sapovirus primers; 0.075 μ M GFP primers; 0.025 pg of GFP DNA; and 0.5-2.0 μ g (2 μ L) cDNA. Thermal cycling was carried out as follows: 1 cycle at 95 °C for 5 min; 35 cycles at 94 °C for 1min, 50 °C for 1min, and 72 °C for 1 min; and 1 cycle at 72 °C for 10 min. Amplified DNAs were immediately loaded onto a 2% agarose gel or were stored at -80 °C.

Pathogenic E. coli conventional multiplex PCR

The EDSP's Pathogenic *E. coli* conventional, multiplex PCR assay was based on that published by Nguyen TV et al. but modified to include an endogenous IAC, the 16S ribosomal RNA gene, *rrsA*.³ Total reaction volumes of 25-µL contained Promega GoTaq Flexi Kit reagents (Madison, WI) with final concentrations as follows: 2 millimolar (mM) MgCl₂; 0.1 mM dNTPs; 0.2 µM each primer with the exception of vt1 and rrsA primers (0.4 µM and 0.1 µM, respectively); 1.25 units (Ū) polymerase (Pol); and 0.5-2.0 µg, (~2.5 µL) sample DNA. PCR was carried out as follows: 1 cycle at 96 °C for 4 min; 30 cycles at 94 °C for 20 sec, 55 °C for 20 seconds (sec), and 72 °C for 10 sec; and 1 cycle at 72 °C for 7 min. Amplified DNAs were immediately loaded onto a 2% agarose gel and run using BioRad (Hercules, CA) horizontal gel electrophoresis cells and power boxes, or were stored at -80 °C. For all conventional PCR assays described herein, select positive controls (pathogen DNAs or plasmids [Genscript, Piscataway, NJ]) and a negative control (water) were included in each run. Nucleic acids were visualized using the Hoefer MacroVue UV-20 Transilluminator (Holliston, MA) and the BioRad Gel DocTM XR+ system.

ETEC Toxins and Colonization Factors conventional, multiplex PCR

The EDSP's ETEC Toxins and Colonization Factors conventional, multiplex PCR assay was based on that published by Nada RA et al. but modified to include the endogenous *rrsA* IAC in every multiplex component (four separate PCRs per sample).⁴ Total reaction volumes of 20- μ L contained Promega GoTaq Flexi Kit reagents with final concentrations as follows: 2 mM MgCl₂; 0.1 mM dNTPs; 1.25 Ū Pol; 0.5-2.0 μ g (3 μ L) sample DNA; and various primer concentrations (**Supplemental Table 2**). PCR was carried out as follows: 1 cycle at 94 °C for 4 min; 35 cycles at 94 °C for 1 min, 55 °C for 30 sec, and 72 °C 1 min; and 1 cycle at 72 °C for 5 min. Amplified DNAs were immediately loaded onto a 1.5% agarose gel or were stored at -80 °C.

Salmonella/Shigella/Campylobacter real-time, multiplex PCR

The EDSP's *Salmonella/Shigella/Campylobacter* real-time, multiplex PCR assay was based on that published by Wiemer, D et al. but modified to exclude the *Yersinia* primer/probe set and include the exogenous, spike-in green fluorescent protein (GFP, IDT) IAC.⁵ Total reaction volumes of 25- μ L contained Qiagen QuantiTect Multiplex PCR Kit (with ROX dye) reagents, with final concentrations as follows: 0.4 μ M each primer and 0.2 μ M each probe with the exception of the GFP probe, which was 0.04 μ M; 0.1 nanograms GFP DNA; and 0.5-2.0 μ g (2.5 μ L) sample DNA. The thermal cycling program was as follows: 1 cycle of 15 min at 95 °C; 45 cycles of 1 min at 94 °C, 30 sec at 50 °C, and 30 sec at 72 °C; and 1 cycle of 10 min at 72 °C.

Vibrio cholera conventional, multiplex PCR

The EDSP's *Vibrio cholera* conventional, multiplex PCR assay was based on that published by Mehrabadi JF et al. but modified to include the exogenous, spike-in GFP IAC.⁶ Final reaction volumes of 25- μ L contained Promega GoTaq Flexi Kit reagents with final concentrations as follows: 2 mM MgCl₂; 0.2 mM dNTPs; 0.5 μ M each primer with the exception of ctxA primers (0.1 μ M); 0.5 picograms (pg) GFP DNA; 0.5 \overline{U} Pol; and 0.5-2.0 μ g (3 μ L) sample DNA. Thermal cycling was carried out as follows: 1 cycle at 94 °C for 4 min; 35 cycles at 94 °C for 1 min, 55°C for 30 sec, and 72 °C 1 min; and 1 cycle at 72 °C for 5 min. Amplified DNAs were immediately loaded onto a 1.5% agarose gel or were stored at -80 °C.

<u>Luminex xTAG® GPP multiplex PCR</u>

Sample Pretreatment and Controls. Sample pretreatment was performed per manufacturer's instructions prior to nucleic acid extraction. Briefly, $\sim 100 - 150$ mg of stool (or 100 µL of liquid stool samples) was added to a Bertin SK38 tube containing 1 mL of easyMag Lysis Buffer and 10 µL xTAG MS2*. xTAG MS2 was added to all sample pretreatment tubes, *EXCEPT to the negative control tube, as an extraction/internal control. 250 µL of each pretreated sample was processed for total nucleic acids. The remaining pretreated solution was stored at -80°C for a maximum of thirty days.

At least one negative extraction control was included per batch of processed specimens. For batches of 1 - 30 samples, one negative control was included. For larger batches, 31 - 60 samples and 61 - 92 samples, two or three negative control are recommended respectively. The negative control replaces the addition of sample with 100 µL of lysis buffer. One positive extraction control was included per batch of processed specimens. Positive controls include known strains (ZeptoMetrix) or positive clinical samples for the targeted viruses, bacteria or parasites. Bacteriophage MS2 is the internal control for the assay.

Nucleic acid extraction. Total nucleic acid was extracted with a QIAamp® MinEluteTM Media Kit (Qiagen®), per manufacturer's instructions. The sample input volume from the pretreatment step was 250 μ L and final elution volume was 120 μ L

Multiplex Amplification. For each sample, 10 μ L of extracted nucleic acid was amplified in a single multiplex RT-PCR/PCR reaction. An additional negative control was included at this step, per manufacturer's instructions. For this negative control, 10 μ L of RNase-free water replaced the addition of sample to the reaction master mix.

A single multiplex reaction identifies all targets in the panel.

Bead Hybridization. Following the amplification step, 5 μ L of the RT-PCR product was then added to the hybridization/detection reaction containing the universal tag and Streptavidin, R-Phycoerythrin conjugate. NOTE: The xTAG GPP Bead Mix tube was vortexed for 30 seconds x 2 (total of 60 s vortexing) at the highest speed to disperse the beads prior to use. The beads were not sonicated as indicated in the manufacturer's protocol.

Data Acquisition and Analysis. Following completion of bead hybridization, the Luminex MagPix system sorts and reads each sample, generating a signal for each bead population. The values are analyzed to determine the presence or absence of each microbial target and controls in each sample against an analyte-specific cut-off. The xTAG Data Analysis Software for the Gastrointestinal Pathogen Panel (TDAS GPP) analyzes the data to provide a report summarizing which pathogens are present.

Supplemental Table 1. Primer and Probe Sequences						
Assay	Name	Target gene	Sequence (5' to 3')	Ref		
Norovirus	Cog1-F	GI, vp1	CGYTGGATGCGITTYCATGA	1		
	Cog1-R	GI, vp1	CTTAGACGCCATCATCATTYA C	1		
	Cog2-F	GII,	CARGARBCNATGTTYAGRTGG	1		
		vp1	ATGAG			
	Cog2-R	GII, vp1	TCGACGCCATCTTCATTCACA	1		
	RNP-F	rnp	AGATTTGGACCTGCGAGCG	7		
	RNP-R	rnp	GAGCGGCTGTCTCCACAAGT	7		
	Ring1C	GI, vp1	56-FAM-AGATYGCGITCICCTGTCCA -3BHQ 1	1		
	Ring2	GII, vp1	Cy5–TGGGAGGGCGATCGCAATCT– 3BHQ 2	1		
	RNP-P	rnp	Cy3–TTCTGACCTGAAGGCTCT GCGCG–3IAbRQSp	7		
Enteric Viruses	Astro-F	rdrp	GGACTGCAAAGCAGCTTCGTG	2		
	Astro-R	rdrp	GTGAGCCACCAGCCATCCCT	2		
	Adeno-F	hexA-F	TTCCCCATGGCICAYAACAC	2		
	Adeno-R	hexA-F	CCCTGGTAKCCRATRTTGTA	2		
	RotaA-F	vp7	AAAGGATGGCCAACAGGATCAGT	2		
	RotaA-R	vp7	GTATARAAHACTTGCCACCAT	2		
	RotaC-F	vp7	CAAATGATTCAGAATCTATTG	2		
	RotaC-R	vp7	GTTTCTGTACTAGCTGGTGAA	2		
	Sapo-F	vp1	CTCGCCACCTACRAWGCBTGGTT	2		
	Sapo-R	vp1	CMWWCCCCTCCATYTCAAACAC	2		
	GFP353-F	gfp	TGAAATTCATCTGCACCACT	NHRC		
	GFP353-R	gfp	CAAGCAAAAGAATGGCATC	NHRC		
Salmonella Shigella Campylo- bacter	Sal-F	ttrR	AATTAGCCATGTTGTAATCTC	5		
	Sal-R	ttrR	ATTGTTGATTCAGGTACAAAC	5		
	Sal-P	ttrR	56-JOEN- CAAGTTCAACGCGCAATTTA-	5		
			BHQ_1			
	Shig-F	ipaH	CAGAAGAGCAGAAGTATGAG	5		
	Shig-R	ipaH	CAGTACCTCGTCAGTCAG	5		
	Shig-P	іраН	TexRd- ACAGGTGATGCGTGAGACTG- LAbBOSn	5		
	Campy-F	ourA	IAbRQSp CTATAACAACTGCACCTACTAAT	5		
	Campy-F Campy-R	gyrA gyrA	ATGAAATTTTTGCCAGTGGTG	5		

<u>г</u>	0 7	L .		5
	Campy-P	gyrA	56-FAM-	5
			CTTAATAGCCGTCACCCCAC-	
			BHQ_1	
	GFP77-F	gfp	AGATGACGGGAACTACAAG	NHRC
	GFP 77-R	gfp	CCTTCAGCTCGATTCTATT	NHRC
	GFP 77-P	gfp	Cy5-	NHRC
		01	CACCTTCGAACTTGACTTCAGCGC-	
			IAbRQSp	
ETEC	STh-F	estA2-4	AATTGCTACTATTCATGCTTTCAGG	4
Toxins/CFs			AC	
mPCR1				
	STh-R	estA2-4	TCT TTT TCA CCT TTC GCT CAG G	4
	STP-F	estA1	ATGAAAAAGCTAATGTTGGCA	4
		estA1	TTAATAACATCCAGCACAGGCA	4
	STp-R		CATAATGAGTACTTCGATAGAGGA	4
	LT-F	eltB1	AC	
	LT-R	eltB1	GAAACCTGCTAATCTGTAACCATC	4
	2111		С	
	rrsA-F	rrsA	CTCTTGCCATCGGATGTGCCCA	NHRC
	(16S rRNA)	11511		i illite
	rrsA-R	rrsA	CCAGTGTGGCTGGTCATCCTCTCA	NHRC
	IISA-K	IISA	CEAUTOTOGETOGICATECTETEA	MIKC
ETEC	mPCRgp1F	cfaB	TGAGTGCTTCWGCAGTAGAGA	4
Toxins/CFs	(CFA/I)			
mPCR2				
	CFA1-R	cfaB	CAGCAAGTTTAACAATTACTTTTT	4
	0111111		AGT	
	mPCRgp-F	csaB	TGAGTGCTTCWGCAGTAGAGA	4
	(CS4)	USUL		
	<u> </u>	csaB	AAGTCACATCTGCGGTTGATAGAG	4
		csuA1	TGAGTGCTTCWGCAGTAGAGA	4
	mPCRgp-F	CSUAT	IUAUIUUIIUWUUAUIAUAUA	
	(CS14)	0.000 Å 1	TACTATTCGAAACACCTGCCG	4
	CS14-R	csuA1		4
	cssBCS6F	cssB	GGA GTG GTA AAT GCA GGA AAC	ŕ
	(CS6)		Ĩ	4
	cssbCS6R	cssB	GTA CCA GAC GAA TAT CCG CTA	4
			TTA	
	rrsA-F	rrsA	CTCTTGCCATCGGATGTGCCCA	NHRC
	rrsA-R	rrsA	CCAGTGTGGCTGGTCATCCTCTCA	NHRC
	115A-K	115A	CEASIGICATECTETEA	MIKU
ETEC	CS3F1	cstA	GGTCTTTCACTGTCAGCTATGAGTT	4
Toxins/CFs	(CS3)			
mPCR3				
	CS3R1	cstA	TAATGTTAAATTATCCTGAGGAGC	4

			С	
	CS5F1	csfA	GCGTGACACGTCAGCTAATATAAA	4
	(CS5) csfA	USIA	С	
	CS5_7R	csfA	GGCATTCATATCAATAGAAATATG	4
	C35_/K	05171	AGAC	
	CS7F (CS7)	csvA	TGCTCCCGTTACTAAAAATACG	4
	CS5 7R	csvA	GGCATTCATATCAATAGAAATATG	4
	C55_/K	0311	AGAC	
	rrsA-F	rrsA	CTCTTGCCATCGGATGTGCCCA	NHRC
	1152 4-1	11571	erendeemedomordeeen	Minte
	rrsA-R	rrsA	CCAGTGTGGCTGGTCATCCTCTCA	NHRC
	110/11	11011		i illite
ETEC	CS2F	cotA	TCTGCTCGTATCAATACCCAAGTT	4
Toxins/CFs	(CS2)			
mPCR4	(-~-)			
	CS2R	cotA	GTGCCAGCGAATGAAACCTCTAAA	4
	mPCRgp3F	csbA/	ACTCTRTCGCATTAACCTATTCT	4
	(CS17/19)	csdA		
	CS17 19R	csbA/	GTCACTTTCATCGGAATTTGCGAG	4
	—	csdA		
	CS8 21F	lngA	TATGAGCCTKCTGGAAGTYATCAT	4
	$(C\overline{S21})$	-		
	CS21R	lngA	GTTATTACGCACTTCGTCTGGT	4
	mPCRgp3F	csoA	ACTCTRTCGCATTAACCTATTCT	4
	(CS1/PCF0			
	71)			
	CS1 PCFO	csoA	CCCTGATATTGACCAGCTGTTAGT	4
	71R			
	rrsA-F	rrsA	CTCTTGCCATCGGATGTGCCCA	NHRC
	rrsA-R	rrsA	CCAGTGTGGCTGGTCATCCTCTCA	NHRC
E. coli	EAEC-F	pCVD	CTGGCGAAAGACTGTATCAT	3
	EAEC-R	pCVD	CAATGTATAGAAATCCGCTGTT	3
	EHEC-F	vt1	GAAGAGTCCGTGGGATTACCG	3
	EHEC-R	vt1	AGCGATGCAGCTATTAATAA	3
	EHEC-F	vt2	ACCGTTTTTCAGATTTTRCACATA	3
	EHEC-R	vt2	TACACAGGAGCAGTTTCAGACAGT	3
	EHEC-F	eaeA	CACACGAATAAACTGACTAAAATG	3
	EHEC-R	eaeA	AAAAACGCTGACCCGCACCTAAAT	3
	EIEC-F	ial*	CTGGTAGGTATGGTGAGG	3
	EIEC-R	ial*	CCAGGCCAACAATTATTTCC	3
	EPEC-F	bfpA	TTCTTGGTGCTTGCGTGTCTTTT	3
	EPEC-R	bfpA	TTTTGTTTGTTGTATCTTTGTAA	3
	ETEC-F	eltB	TCTCTATGTGCATACGGAGC	3

	ETEC-R	eltB	CCATACTGATTGCCGCAAT	3
	ETEC-F	estA	GCTAAACCAGTARGGTCTTCAAAA	3
	ETEC-R	estA	CCCGGTACARGCAGGATTACAACA	3
	GFP77-F	gfp	AGATGACGGGAACTACAAG	NHRC
	GFP 77-R	gfp	CCTTCAGCTCGATTCTATT	NHRC
V. cholera	ctxA-F	ctxA	GGTCTTATGCCAGAGGACAG	6
	ctxA-R	ctxA	GTTGGGTGCAGTGGCTATAAC	6
	tcpA-F	tcpA	ATTCTTGGTGATCTCATGATAAGG	6
	tcpA-R	tcpA	TTAATTCACCACAAATATCTGCC	6
	ompW-F	ompW	CACCAAGAAGGTGACTTTATTGTG	6
	ompW-R	ompW	GAACTTATAACCACCCGCG	6
	GFP77-F	gfp	AGATGACGGGAACTACAAG	NHRC
	GFP 77-R	gfp	CCTTCAGCTCGATTCTATT	NHRC
NHRC, Naval H	Iealth Research Ce	nter	· · · · · · · · · · · · · · · · · · ·	

Supplemental Table 2a: ETEC Toxins Master Mix				
Component	µL/Rxn	Final	Amplicon size	
Nuclease-free H2O	4.4			
Promega GoTaq Flexi 5x PCR	5	1 X		
MgCl2 (25 mM)	2	2 mM		
dNTP (10 mM)	1	100µM/ea		
10 μM rrsA-F (16S rRNA)	0.18	1.8 pmol	105 bp	
10 μM rrsA-R	0.18	1.8 pmol		
30 μM estA2-4F (SThF)	0.5	15 pmol	133 bp	
30 μM estA2-4R (SThR)	0.5	15 pmol		
30 μM estA1-F (STpF)	1	30 pmol	239 bp	
30 μM estA1-R (STpR)	1	30 pmol		
30 μM eltB1-F (LTF)	2	60 pmol	402 bp	
30 μM eltB1-R (LTR)	2	60 pmol		
Promega GoTaq Flexi DNA	0.25	1.25 U		
TOTAL VOLUME	20			

Supplemental Table 2b: ETEC Colonization Factors Master Mix 1					
Component	µL/Rxn	Final	Amplicon size		
Nuclease-free H2O	3.4				
Promega GoTaq Flexi 5x PCR	5	1 X			
MgCl2 (25 mM)	2	2 mM			
dNTP (10 mM)	1	100µM/ea			
10 μM rrsA-F (16S rRNA)	0.18	1.8 pmol	105 bp		
10 μM rrsA-R	0.18	1.8 pmol			

30 μM mPCRgp1F (CFA/I)	1	30 pmol	204
30 μM CFA1-R	1	30 pmol	
30 µM mPCRgp1F (CS4)	1	30 pmol	300
30 μM CS4-R	1	30 pmol	
30 µM mPCRgp1F (CS14)	1	30 pmol	357
30 μM CS14-R	1	30 pmol	
30 µM cssBCS6F (CS6)	1	30 pmol	416
30 µM cssbCS6R	1	30 pmol	
Promega GoTaq Flexi DNA	0.25	1.25 U	
TOTAL VOLUME	20		

Supplemental Table 2c: ETEC Colonization Factors Master Mix 2				
Component	µL/Rxn	Final	Amplicon size	
Nuclease-free H2O	5.4			
Promega GoTaq Flexi 5x PCR	5	1 X		
MgCl2 (25 mM)	2	2 mM		
dNTP (10 mM)	1	100µM/ea		
10 μM rrsA-F (16S rRNA)	0.18	1.8 pmol	105 bp	
10 μM rrsA-R	0.18	1.8 pmol		
30 μM CS3F1 (CS3)	1	30 pmol	136 bp	
30 μM CS3R1	1	30 pmol		
30 μM CS5F1 (CS5)	1	30 pmol	235 bp	
30 μM CS5 7R	1	30 pmol		
30 µM CS7F (CS7)	1	30 pmol	418 bp	
30 µM CS5 7R	1	30 pmol		
Promega GoTaq Flexi DNA	0.25	1.25 U		
TOTAL VOLUME	20			

Supplemental Table 2d: ETEC Colonization Factors Master Mix 3				
Component	µL/Rxn	Final	Amplicon size	
Nuclease-free H2O	3.4			
Promega GoTaq Flexi 5x PCR	5	1 X		
MgCl2 (25 mM)	2	2 mM		
dNTP (10 mM)	1	100µM/ea		
10 μM rrsA-F (16S rRNA)	0.18	1.8 pmol	105 bp	
10 μM rrsA-R	0.18	1.8 pmol		
30 µM CS2F (CS2)	1	30 pmol	140 bp	
30 μM CS2R	1	30 pmol		
30 μM mPCRgp3F (CS17/19)	1	30 pmol	169 bp	
30 μM CS17_19R	1	30 pmol		
30 µM CS8 21F (CS21)	1	30 pmol	292 bp	
30 μM CS21R	1	30 pmol		

30 μM mPCRgp3F	1	30 pmol	334 bp
30 µM CS1_PCFO71R	1	30 pmol	
Promega GoTaq Flexi DNA	0.25	1.25 U	
TOTAL VOLUME	20		

REFERENCES

- Vega E, Barclay L, Gregoricus N, Williams K, Lee D, Vinje J, 2011. Novel surveillance network for norovirus gastroenteritis outbreaks, United States. Emerg Infect Dis 17: 1389-95.
- 2. Khamrin P, Okame M, Thongprachum A, Nantachit N, Nishimura S, Okitsu S, Maneekarn N, Ushijima H, 2011. A single-tube multiplex PCR for rapid detection in feces of 10 viruses causing diarrhea. J Virol Methods 173: 390-3.
- 3. Nguyen TV, Le Van P, Le Huy C, Gia KN, Weintraub A, 2005. Detection and characterization of diarrheagenic Escherichia coli from young children in Hanoi, Vietnam. J Clin Microbiol 43: 755-60.
- 4. Nada RA, Shaheen HI, Touni I, Fahmy D, Armstrong AW, Weiner M, Klena JD, 2010. Design and validation of a multiplex polymerase chain reaction for the identification of enterotoxigenic Escherichia coli and associated colonization factor antigens. Diagn Microbiol Infect Dis 67: 134-42.
- Wiemer D, Loderstaedt U, von Wulffen H, Priesnitz S, Fischer M, Tannich E, Hagen RM, 2011. Real-time multiplex PCR for simultaneous detection of Campylobacter jejuni, Salmonella, Shigella and Yersinia species in fecal samples. Int J Med Microbiol 301: 577-84.
- 6. Mehrabadi JF, Morsali P, Nejad HR, Imani Fooladi AA, 2012. Detection of toxigenic Vibrio cholerae with new multiplex PCR. J Infect Public Health 5: 263-7.
- 7. Boddicker JD, Rota PA, Kreman T, Wangeman A, Lowe L, Hummel KB, Thompson R, Bellini WJ, Pentella M, Desjardin LE, 2007. Real-time reverse transcription-PCR assay for detection of mumps virus RNA in clinical specimens. J Clin Microbiol 45: 2902-8.