S1 Table. MALDI-TOF MS and HPLC analysis of substrates 1–27. MALDI-TOF mass spectra were performed using a Bruker UltraflexExtreme MALDI TOF/TOF instrument and analysed with the Bruker Daltonics flexAnalysis software. For peptide/peptoid analysis, sinapic acid was used as a matrix and positive ion mass spectra were recorded. HPLC analyses were performed on an Agilent 1100 analytical system equipped a Supelco Discovery® C18 column (5 μ m, 5 cm) coupled to a Polymer laboratories 100 ES evaporative light scattering detector (ELSD). Eluting from 5% A (H₂O + 0.1% formic acid) to 95% (MeOH + 0.1% formic acid) over 8 min, followed by isocratic 95% B for 1 min, at a flow rate of 1 mL/min. Semipreparative HPLC purifications were performed on an Eclipse XDB-C18 column (9.4 x 250 mm, 5 μ m), at a flow rate of 2 mL/min, with detection/collection at 254 nm. The following gradient was used: 5 to 50 % A over 6 min, 50 to 100% B for 30 min.

	Sequence	MW [calc.]	MALDI-TOF	HPLC
	•			purity (%)
1	DEVD	$(M+H)^{+} 2845.8$	2845.1	100
2	DEVD	$(M+H)^{+} 2837.7$	2837.1	92
3	DEVD	$(M+H)^{+} 2883.7$	2883.9	75
4	DPVD	$(M+H)^{+} 2813.8$	2813.3	93
5	D <mark>GV</mark> D	$(M+H)^{+} 2774.6$	2774.2	97
6	DAVD	$(M+H)^{+} 2788.6$	2788.3	99
7	DLVD	$(M+H)^{+} 2829.8$	2829.4	96
8	DNVD	$(M+H)^{+} 2829.8$	2829.4	98
9	DVVD	$(M+H)^{+} 2816.6$	2816.3	99
10	DGPD	$(M+TFA-H)^{+}$ 2881.7	2881.6	93
11	DAPD	$(M+TFA-H)^{+} 2895.7$	2895.5	95
12	DLPD	$(M+TFA-H)^{+} 2937.8$	2934.3	90
13	D <mark>NP</mark> D	$(M+TFA-H)^{+}$ 2938.7	2937.4	94
14	D <mark>VP</mark> D	$(M+TFA-H)^{+}$ 2923.7	2923.0	100
15	dgvd	$(M+Na+K)^{+}$ 2832.7	2832.4	100
16	d <mark>av</mark> d	$(M+Na+K)^{+}$ 2847.7	2847.5	100
17	d <mark>lv</mark> d	$(M+Na+K)^{+}$ 2889.7	2889.3	100
18	dnvd	$(M+Na+K)^{+}$ 2890.7	2890.3	100
19	d <mark>vv</mark> d	$(M+Na+K)^{+} 2875.7$	2875.4	100
20	dgpd	$(M+Na+K)^{+}$ 2831.7	2831.4	100
21	d <mark>ap</mark> d	$(M+Na+K)^{+}$ 2845.7	2845.5	100
22	d <mark>lp</mark> d	$(M+Na+K)^{+}$ 2887.7	2887.4	100
23	d <mark>np</mark> d	$(M+Na+K)^{+}$ 2888.7	2888.3	100
24	d <mark>vp</mark> d	$(M+Na+K)^{+} 2873.7$	2873.4	100
25	DLPD-Ahx-k	$(M + H)^{+} 2827.7$	2827.5	100
26	DLPD-Ahx-K(Me)	$(M + 2Na - H)^{+} 2883.6$	2883.9	100
27	DLPD-K-Ahx	$(M + H)^{+} 2827.7$	2827.7	100