We assume that the growth functions satisfy f = 0 and g = 0, and that there
is no introduction point (we recall that reflecting conditions have been assumed
on the exterior boundaries). Let us define

P(t) = Pop(t) + Pip(t),

where Psp is the total population in the 2D patches:
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and P p is the total population on the 1D edges:
PlD(t> = Z uf(t ')7 (B)
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where A,,, corresponds to the set of interior edges (corridors).
Integrating by parts the equation (2), which is satisfied by the population
density on any patch 2;, the following can be obtained:
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Using the boundary conditions (3) and (4), and because
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the result is:

Using the relations (A) and (D), it can be observed that:
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Then, rewriting P;p in the form
Pip(t)= Y a(t,-)
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and using the equation (5), we get:
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Using the standard boundary conditions (6) and (8), for each i,

Y D@.af (L)) - 6.k (0) = 0.
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In addition, because the application @ : (i, k) — (i, k') is a bijection from the
set of all indices {(i,k) s.t. A¥ € A,.} to itself, it can readily be determined

that
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Finally, adding the equations (E) and (F) results in:

which means that the total mass was conserved.



