
 

S2 File.  Derivation of the basic reproduction number (R0) using the next-generation 

matrix method. 

 

The expressions for the basic reproduction number (R0) were derived using the 

next-generation matrix (NGM) method originally defined by van den Driessche & 

Watmough [1]. It is straightforward to verify that models 1 and 2 satisfy the conditions 

(A1)—(A5) in [1] needed to apply this method. Indeed, (A1) the directed transfer of 

individuals between compartments can be expressed as the difference between positive-

valued functions Fi and Vi, Fi - Vi. (A2) If a compartment is empty, then there can be no 

transfer out of the compartment. (A3) The incidence of infection for uninfected 

compartments is zero. (A4) There is no immigration of infected individuals into the 

system. (A5) In the absence of new infections, the disease-free equilibrium (DFE) is stable.  

To construct the next-generation matrix, (FV
-1

), we defined the matrices F and V as:  

 

𝐹 =  [
𝜕𝐹𝑖(𝑥)

𝜕𝑥𝑗
] 𝑥 = 𝑥0  and  𝑉 =  [

𝜕𝑉𝑖(𝑥)

𝜕𝑥𝑗
] 𝑥 = 𝑥0, 

 

where the (i,j) entry of matrix F was the rate at which infected individuals in compartment 

j produce new infections in compartment i and the (i, j) entry of V was the net rate of 

change of animals in compartment by any other means. We considered that E, IA and IC are the 

infected states but that new infections occurred only in the E compartment. The rates were 

evaluated at the disease-free equilibrium x = x0.   

 

Setting 𝐼 = (E, IA, IC)T  for model 1,it follows that 

𝑑𝐼

𝑑𝑡
=  𝐽𝐼 = (𝐹 − 𝑉 )𝐼 , 

where J denotes the Jacobian matrix evaluated at the DFE and F and V matrices are:   

𝐹 =  [
0 𝛽𝐴𝑆0 𝛽𝐶  𝑆0
0 0 0
0 0 0

] 

 

𝑉 =  [
𝑑 + ℎ + 𝛼 0 0

−𝛼𝑝1 𝑑 + ℎ + µ𝐴 + 𝛿 0
−𝛼(1 − 𝑝1) −𝛿(1 − 𝑝2) 𝑑 + ℎ + µ𝐶 + 𝛾

] 

 

Following [1,2], the basic reproduction number R0 is defined as the spectral radius (dominant 

eigenvalue) of matrix FV −1. That is, 

R0 = ρ(F V −1) = R0A + R0C , (A1) 



 

 

where 

𝑅0𝐴 =  
𝛼𝑝1𝛽𝐴𝑆0

(𝑑 + ℎ +  𝛼)(𝑑 + ℎ +  µ
𝐴

+  𝛿)
 

 

𝑅0𝐶 =  [
𝛼(1 − 𝑝1)

(𝑑 + ℎ + 𝛼)
+  

𝛼𝑝1𝛿(1 − 𝑝2) 

(𝑑 + ℎ + 𝛼)(𝑑 + ℎ +  𝜇𝐴 +  𝛿)
] 

𝛽𝐶𝑆0

(𝑑 + ℎ +  𝜇𝐶 +  𝛾)
 

 

The expression for R0A can be interpreted as follows: a fraction αp1/(d + h + α) of 

exposed hosts E progress to state IA and spend an average of 1/(d + h + µA + δ) days in 

state IA over the expected duration of infection. Multiplying by βAS0 gives the expected 

number of secondary infections resulting from interactions between susceptible and acutely-

infected hosts. 

Similarly, the expression for R0C can be interpreted as follows: a fraction αp1/(d + h 

+ α) of exposed hosts E progress to state IA, and of these acutely- infected hosts, a fraction 

δ(1−p2)/(d + h + µA + δ) progress to state IC spending an average of 1/(d + h + µC + γ) days 

in state IC over the expected duration of infection. Alternatively, a fraction α(1− p1)/(d + h + α) 

of exposed hosts progress directly to state IC and spend an average of 1/(d + h + µC + γ) days 

in state IC. Multiplying by βCS0 gives the expected number of secondary infections resulting 

from interactions between susceptible and chronically-infected hosts. 

For model 2, we considered that Ej, IAj, ICj, Ea, IAa, and ICa are the infected states but that 

new infections occur only when a susceptible bird Sj or Sa became exposed Ej or Ea. Thus, 

F and V matrices are:  
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where   c1 = dj + hj + Ω + α, 

c2 = dj + hj + Ω + μAj + δ, 

c3 = dj + hj + Ω + μCj + γ, 

c4 = da + ha + α, 

c5 = da + ha + μAa + δ, 

c6 = da + ha + μCa + γ. 

 

Thus, R0 is defined as: 

R0 = ρ(F V −1) = ½ [𝑅01 + 𝑅02  + √(𝑅01 − 𝑅02)2 + 4𝑅03𝑅04],  (A2) 

where 

R01 = 
𝛼𝑝1𝛽𝐴𝑗𝑆𝑗0

𝑐1𝑐2
+  

𝛼(1−𝑝1)𝛽𝐶𝑆𝑗0

𝑐1𝑐3
+  

𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑗0

𝑐1𝑐2𝑐3
+  

Ω𝛼𝑝1𝛽𝐴𝑎𝑆𝑗0

𝑐1𝑐4𝑐5
+  

Ω𝛼𝑝1𝛽𝐴𝑎𝑆𝑗0

𝑐1𝑐2𝑐5
+

 
Ω𝛼(1−𝑝1)𝛽𝐶𝑆𝑗0

𝑐1𝑐4𝑐6
+  

Ω𝛼(1−𝑝1)𝛽𝐶𝑆𝑗0

𝑐1𝑐3𝑐6
+  

Ω𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑗0

𝑐1𝑐4𝑐5𝑐6
+  

Ω𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑗0

𝑐1𝑐2𝑐5𝑐6
+  

Ω𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑗0

𝑐1𝑐2𝑐3𝑐6
, 

R02 = 
𝛼𝑝1𝛽𝐴𝑗𝑆𝑎0

𝑐1𝑐2
+  

𝛼(1−𝑝1)𝛽𝐶𝑆𝑎0

𝑐1𝑐3
+  

𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑎0

𝑐1𝑐2𝑐3
+  

Ω𝛼𝑝1𝛽𝐴𝑎𝑆𝑎0

𝑐1𝑐4𝑐5
+  

Ω𝛼𝑝1𝛽𝐴𝑎𝑆𝑎0

𝑐1𝑐2𝑐5
+

 
Ω𝛼(1−𝑝1)𝛽𝐶𝑆𝑎0

𝑐1𝑐4𝑐6
+ 

Ω𝛼(1−𝑝1)𝛽𝐶𝑆𝑎0

𝑐1𝑐3𝑐6
+  

Ω𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑎0

𝑐1𝑐4𝑐5𝑐6
+  

Ω𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑎0

𝑐1𝑐2𝑐5𝑐6
+  

Ω𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑎0

𝑐1𝑐2𝑐3𝑐6
, 

R03 = 
𝛼𝑝1𝛽𝐴𝑎𝑆𝑗0

𝑐4𝑐5
+  

𝛼(1−𝑝1)𝛽𝐶𝑆𝑗0

𝑐4𝑐6
+  

𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑗0

𝑐4𝑐5𝑐6
, 

R04 = 
𝛼𝑝1𝛽𝐴𝑎𝑆𝑎0

𝑐4𝑐5
+  

𝛼(1−𝑝1)𝛽𝐶𝑆𝑎0

𝑐4𝑐6
+ 

𝛼𝑝1𝛿(1−𝑝2)𝛽𝐶𝑆𝑎0

𝑐4𝑐5𝑐6
. 

 

The terms R01 and R02 represent the average number of secondary juvenile or adult 

infections, respectively, produced by one exposed juvenile Ej during its entire infectious 

period. The terms R03 and R04 represent the average number of secondary juvenile or adult 

infections produced by one exposed adult Ea during its entire infectious period, 

respectively.  
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