S2 Appendix

Goodness of fit statistics

We report here the complete description of the fitting curves used in the main text to establish specific relationships between the fractional parameter α and four solution features of interest. The statistics used to evaluate the goodness of fit of each of the considered curves are:

1. the sum of squares due to error (SSE) measuring the total deviation of the response values from the fit to the response values

$$
\mathrm{SSE}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

2. the square of the correlation between the response values and the predicted response values (R-square)

$$
\text { R-square }=1-\frac{\mathrm{SSE}}{\mathrm{SST}}, \quad \text { where } \quad \mathrm{SST}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2},
$$

with SST representing the sum of squares about the mean;
3. the adjusted R-square based on the residual degrees of freedom, that is,

$$
\text { adjusted R-square }=1-\frac{\operatorname{SSE}(n-1)}{\operatorname{SST}(k)}
$$

where n is the number of response values and k is the number of residual degrees of freedom defined as $k=n-m$ with m equal to the number of fitted coefficients estimated from the response values;
4. the root mean squared error (RMSE) estimating the standard deviation of the random component in the data and defined as

$$
\mathrm{RMSE}=\sqrt{\frac{\mathrm{SSE}}{k}}
$$

- Depolarization peak

Linear fit:

$$
f(\alpha)=p_{1} \alpha+p_{2}
$$

Coefficients (with 95% confidence bounds):

$$
\begin{aligned}
& p_{1}=8.917(8.819,9.015) \\
& p_{2}=-2.622(-2.776,-2.468)
\end{aligned}
$$

Goodness of fit:
SSE: 0.01185 R-square: 0.9998
Adjusted R-square: 0.9998 RMSE: 0.03848

Figure 1: Curve fitting for the action potential peak height data and corresponding residuals.

- Action potential dome peak

Power law fit:

$$
f(\alpha)=a \alpha^{b}+c
$$

Coefficients (with 95% confidence bounds):

$$
\begin{aligned}
a & =-18.35(-18.75,-17.95) \\
b & =-5.037(-5.261,-4.813) \\
c & =16.96(16.8,17.12)
\end{aligned}
$$

Goodness of fit:
$\begin{array}{ll}\text { SSE: } 0.03155 & \text { R-square: } 0.9997 \\ \text { Adjuste R-square: } 0.9996 & \text { RMSE: } 0.06713\end{array}$
Adjusted R-square: 0.9996 RMSE: 0.06713

- Early repolarization minimum

Power law fit:

$$
f(\alpha)=a \alpha^{b}+c
$$

Coefficients (with 95% confidence bounds):

$$
\begin{aligned}
a & =-47.51(-49.27,-45.75) \\
b & =-1.402(-1.504,-1.3) \\
c & =24.37(22.34,26.4)
\end{aligned}
$$

Figure 2: Curve fitting for the action potential dome peak data and corresponding residuals.

Goodness of fit:
SSE: $0.04996 \quad$ R-square: 0.9999
Adjusted R-square: 0.9999 RMSE: 0.08448

- Conduction Velocity

Quadratic fit:

$$
f(\alpha)=p_{1} \alpha^{2}+p_{2} \alpha+p_{3}
$$

Coefficients (with 95% confidence bounds):

$$
\begin{aligned}
& p_{1}=34.56(34.06,35.07) \\
& p_{2}=-65.18(-66.76,-63.61) \\
& p_{3}=32.34(31.14,33.53)
\end{aligned}
$$

Goodness of fit:

SSE: 0.01694	R-square: 1
Adjusted R-square: 1	RMSE: 0.04919

Figure 3: Curve fitting for the early repolarization minimum data and corresponding residuals.

Figure 4: Curve fitting for the conduction velocity data and corresponding residuals.

