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Abstract

This supplementary information for our paper State-space modelling of
the drivers of animal movement provides additional detail of the computa-
tional modelling approach we employ. While this information is available
in the cited references, we include a complete description here so that our
results may be more self contained. In this document we first introduce the
radial basis algorithm previously employed to model deterministic scalar
time series data and then describe how this can be adapted to provide a
deterministic state space model of animal movement.

1 Introduction — problem background

There are many potential approaches which one can apply to model determin-
istic causal relationships among observed variables. The approach we adopt
here is merely that which we are most comfortable with and which we are most
capable of using appropriately. Let {xt}t be a sequence of scalar time series
observations — that is, xt is a single real number which is the experimentally
measured output state of some, presumably, deterministic system. We will deal
with both observational and dynamical noise in what follows, but the behaviour
of interest to us is the deterministic interaction.

The deterministic interaction is assumed to be due to a higher (than 1)
dimensional system and the scalar state xt is merely our “read-out” of that
system. To obtain a proxy of that underlying higher dimensional system —
the underlying state-space — we appeal to Takens’ Embedding Theorem [6] a
linchpin of nonlinear time series analysis since the 1980s [5]. Under moderately
mild assumptions (which are taken to hold as a matter of expedience) we can
construct vector points vt from delay versions of the scalar:

vt = (xt, xt−1, xt−2, . . . , xt−d+1) (1)

where the embedding dimension d needs only be sufficiently large to capture
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the deterministic dynamics1. By appealling to Takens’ theorem we now have
a sequence of vectors vt such that the transition between them vt → vt+1 cap-
tures the underlying deterministic dynamics. Observational noise enters the
picture here and can (essentially) be thought of as replacing these observations
with probability distributions, nonetheless the observed values are the maximum
likelihood estimate of the underlying state2.

A fundamental question in nonlinear time series analysis and experimental
dynamical systems theory is now how can we recover the function F : Rd → Rd
that captures the underlying dynamics of our system? That is, we require that
F (vt) ≈ vt+1. Note that since vt+1 = (xt+1, xt, xt−1, . . . , xt−d+2) all of the
information to obtain vt+1 is contained in vt 1 — except xt+1 and hence, what
we actually require is a function f : Rd → R such that

f(vt) = xt+1 + εt+1 (2)

where εt+1 is independent and identically distributed noise (IID). Although IID
is sufficient tonsure that the model f captures the “interesting” dynamics and
that the residuals ε are unbiased, we will later restrict this to being Gaussian
as a computational expediency — again, not something that is central to the
current document.

Note that this background with a problem in nonlinear time series analysis
has now led us to a point where we wish to obtained a scalar function of a
vector variable — a fairly standard problem in interpolation or surface fitting.
Nonetheless, in the next section we present the particular approach we have
chosen to take.

2 Radial Basis Functions and Minimum Descrip-
tion Length

The function f is essential a surface fit intended to interpolate a sequence of
observed data pairs (vt;xt+1). Functional approximation tells us [1] that among
the many possibilities, radial basis functions offer a good choice with compact
support, infinite differentiability, and relatively straightforward minimisations.
Moreover, these functions are mathematically well understood and have an es-
tablished pedigree [3].

We approximate the function f with a some of radial basis terms, with the
addition of linear dependence (capturing potential autoregressive processes in
the time series problems, and linear correlation in the more general setting). In
what follows we maintain the indexing by t, but this does now not necessarily
represent time sequencing of points and the observed data pairs (vt;xt+1) may

1There are complications and extensions of this scheme which will provide improved results:
selection of embedding dimension and embedding lag as well as non-uniform and even variable
embedding strategies. However none of this machinery is necessary for the current discussion.

2If the topological space is “flat enough” — again, something that does not concern us
here.
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be more generic. The radial basis function takes the form:

f(xt, xt−1, . . . , xt−d+1) =

m∑
i=1

λixt−`i +

M∑
i=m

λiφ

(
‖vt − ci‖

ri

)
(3)

where `i > `i−1 are an increasing sequence of lags selecting some subset of the
past values which are significant. The function φ : Rd− → R defines the shape
of the basis functions (we’ll mainly use Gaussians) and the parameters ci ∈ Rd
and ri ∈ R are the centre and radius of each basis function. Note that the
model is linear in the parameters λi (hence this model formulation is referred
to as pseudo-linear [2]), but the dependence on parameters `i, ci and ri may be
highly nonlinear.

Before considering the selection of these various model parameters in more
detail is is important to reflect on the most significant parameter of all — M , the
model size. Given that the observed data set is (almost always) finite, if M is
sufficiently large then the model can be fit arbitrarily well. However, this is over-
fitting and will not lead to good generalisation or good performance of the model.
Conversely, if M is too small the model will not contain essential dynamical
features and the errors will include this structure as bias. A compromise must
be found.

One (rather common) approach to this conflict is to separate the observed
data to a training (or “fitting”) and testing set. The model is fit only on the
training data and the model parameters are tuned to that. The process is
repeated for different choice of model size M and one chooses the model that
performs best on the otherwise unseen testing data. The disadvantage of this
approach is that only half the data is used to build the actual model. We employ
a computational alternative to this heuristic. Description length is described in
detail in the book of Rissanen [4], we provide only a brief precise.

Roughly, description length a measure of the compression achieved by de-
scribing a model and model prediction errors rather than describing the original
data. If a model is a good model, then it provides a compact description of
the data and the unknown data values can easily and cheaply be recovered by
applying the model to the known input data. However, if a model is too large
and consequentially a bad model, then the advantage of describing the data
through the model prediction error is out weighted by the cost of describing the
complexities of the model. Hence, as a function of M description length consists
of two components: (1) the cost of describing the model, which increases with
increasing M ; and, (2) the cost of recovering the data through the model pre-
diction errors, which decreases with M . The optimal value of M occurs when
these two costs balance and we achieve a minimum. The minimum description
length principle states that this value of M provides the best model, given the
data.

Computationally, description length L(x, θ) can be computed as follows. As
above x is the data and y the correspond n unknowns and we use θ to represent
a vector of all the model parameters.

Let V be the n ×M matrix which is the evaluation of each basis function
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on each data point I.e. Vij = φj(xi−1+d, . . . , xi). The model (3) can then be
expressed in vector notation as

e = y − V λ (4)

where y and e are the corresponding unknowns and model error vectors (length
n).

Assume that the errors e have a Gaussian distribution e ∼ N(0, σ2) and

hence their likelihood Pe = 1√
2πσ2

e−
e2

2σ2 . The description length of the data

and the parameters is then expressed in two terms, the first the description
length of the errors (the negative log-likelihood) and the second the description
length of the parameters:

L(y, θ) = −
n∑
t=1

log2(Pet) + L(θ)

=
n

2
log2 2πσ2 +

1

2σ2
(y − V λ)t(y − V λ) + L(θ)

We seek the best model, and hence the optimal values of λ = λ̂ and σ: DλL(x, θ) =
0:

− 1

σ2
V T (y − V λ) = 0

λ̂ = (V TV )−1V T y

Dσ2L = 0:

n

2

1

σ2
− 1

2(σ2)2
(y − V λ)T (y − V λ) = 0

σ2 = (y − V λ)T (y − V λ)
1

n

=
eT e

n

Let δ be the precision of λ and η be the precision of σ2 (yes, we need that too).

Q =

[
DλλL(y, θ) Dλσ2L(y, θ)
Dσ2λL(y, θ) Dσ2σ2L(y, θ)

]
DλλL(y, θ) = − 1

σ2
V TV

Dλσ2L(y, θ) = (Dσλ2L(y, θ))
T

= − 1

(σ2)2
V T (y − V λ)

Dσ2σ2L(y, θ) =
n

2

1

(σ2)2
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But DλL(y, θ) = 0 means that V T (y − V λ) = 0, and hence

Q =

[
− 1
σ2V

TV 0
0 −n2

1
(σ2)2

]

which implies δ and η can be obtained as follows:[
1

σ2
V TV δ

]
j

=
1

δj
(5)

n

2

1

(σ2)2
η =

1

η

η =

√
2

n
σ2 (6)

Finally:

L(y, θ) =
n

2
log2

(
2π
eT e

n

)
+

1

2σ2
eT e−

k∑
j=1

log2 δj + log2

(√
n

2

1

σ2

)

=
n

2
log2 2π

eT e

n
+
n

2
−

n∑
j=1

log2 δj + log2 (

√
2

n

eT e

n
)

=
n

2
log2 2π +

n

2
− 1

2
log2

n

2︸ ︷︷ ︸
mostly constant

+ (
n

2
+ 1) log2

eT e

n︸ ︷︷ ︸
∝ L(x|θ)=L(e)

−
k∑
j=1

log2 δj︸ ︷︷ ︸
∝ L(θ)

Although messy, this last expression is entirely computable. The first part is
largely constant and not required for optimisation of model size M , the second
part is the cost of the model prediction errors, and the final term the cost of the
model parameters expressed in terms of the precisions. The precisions, in turn,
are computed as the solution of Eqn. (5).

Finally, we need to discuss the choice of the basis functions φ and the
optimisation of the nonlinear parameters. We choose Gaussian basis φ(x) =
exp (−x2/2) as we find that it works well in a wide variety of situations. This
choice, however is arbitrary.

Nonetheless, the choice of Gaussians mean that the basis function are such
that they have local effect centred about the parameter ci (the centre). Away
from ci the contribution of each basis function vanishes. The rate at which that
influence vanishes is dictated by ri (the radius). Hence, both centre and radius
can be chosen heuristically and optimised locally to place basis functions where
the error is currently largest. Sensitivity analysis is then performed to select
amongst an ensemble of potential basis functions and between those already
in the existing model [2]. The linear parameters can be computed directly via
ordinary least squares and matrix pseudo-inverse.
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3 Adaption to animal behaviour

The modelling process described so far is intended to application to time se-
ries data. However, the extension to arbitrary input-output relationships, and
hence the animal behaviour problems discussed in our paper is entirely straight-
forward. Removing the temporal dependence and modifying the penalty cost
within the description length calculation, one can follow exactly the same pro-
cedure. For a known set of data xi and corresponding unknown scalar targets
yi (formerly, this was (xt; yt+1), the change is only notational). The matrix V is
formed from the evaluation of the basis functions on the data y, the errors e are
the difference between the linear combination of these evaluations and the tar-
get data values y. Hence, following the procedure described above, one achieves
a deterministic causal relationship f(x) ≈ y from which the main results of this
paper stem.
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