Term	Notation	Definition
light set	\mathcal{P}	set of positive spectral power distributions, i.e., functions
		$p(\lambda)$ of wavelength, integrable on the visible spectrum interval
		$[\lambda_{\min}, \lambda_{\max}]$ such that $p(\lambda) > 0$ for each λ
object set	X	set of spectral reflectance functions, i.e., functions $x(\lambda)$ of wave-
		length integrable on $[\lambda_{\min}, \lambda_{\max}]$ and such that $0 \le x(\lambda) \le 1$.
object-light	$\mathcal{X} imes \mathcal{P}$	Cartesian product of the object and light sets, i.e., the set of all
set		object/light pairs $(x, p), x \in \mathcal{X}$ and $p \in \mathcal{P}$.
colour equiv-	~	equivalence relation on $\mathcal{X} \times \mathcal{P}$ such that when a pair of objects x_1 ,
alence		and x_2 illuminated by lights p_1 , and p_2 , respectively, are colour
		equivalent, i.e., $(x_1, p_1) \approx (x_2, p_2)$, these object/light pairs have
		the same colour appearance (i.e., are completely visually indistin-
		guishable).
object colour		class of colour equivalent object/light pairs
object-	$\mathcal{C} = (\mathcal{X} \times \mathcal{P}) / \approx$	set of the classes of colour equivalent object/light pairs
colour set		
i^{th} colour	$\varphi_i = \mathcal{X} \times \mathcal{P} ightarrow \mathbf{R}^3$	the response of φ_i (e.g., cone photoreceptor) to an object/light
mechanism		pair (x, p) is given by Eq. 1
colour mech-	$\Phi = (\varphi_1, \varphi_2, \varphi_3)$	set of colour mechanisms
anism set		
colour signal	$\Phi_p(x) =$	vector of the colour mechanism responses to $x(\lambda)$ illuminated by
	$\left(\varphi_{1}\left(x,p ight) ,\varphi_{2}\left(x,p ight) ,\varphi_{3}\left(x,p ight) ight) $	$))p\left(\lambda ight)$
metamerism	~	equivalence relation on $\mathcal{X} \times \mathcal{P}$ defined as $(x_1, p_1) \sim (x_2, p_2) \Leftrightarrow$
		$\Phi_{p_1}\left(x_1\right) = \Phi_{p_2}\left(x_2\right)$
object-	$\Phi_{p}\left(\mathcal{X} ight)$	set of colour signals produced by object set under illuminant $p(\lambda)$
colour solid		
under il-		
luminant		
$p\left(\lambda ight)$		
metamer	ρ	correspondence between object-colour solids $\Phi_{p_1}(\mathcal{X})$ and $\Phi_{p_2}(\mathcal{X})$
mismatching		that associates with one another the points in these two object-
correspon-		colour solids that are produced by a common spectral reflectance
dence		function
metamer	$\rho\left(z;p_1,p_2\right)$	given z in Φ_p , set of points in $\Phi_{p_2}(\mathcal{X})$ with which z is in ρ -
mismatch		correspondence (see Eq. 2)
volume		

1 S1 Appendix: Glossary of Terms and Symbols

Term	Notation	Definition
colour atlas	\mathcal{A}	a subset of the object-light set $\mathcal{X} \times \mathcal{P}$ that is in one-to-one
		correspondence with the object-colour set $(\mathcal{X} \times \mathcal{P}) / \approx$.
object-	\mathcal{A}_x	a subset \mathcal{A}_x in the object set \mathcal{X} such that there is a subset
colour atlas		\mathcal{A}_p in the light set \mathcal{P} (a light-colour atlas) such that $\mathcal{A}_x \times \mathcal{A}_p$
		makes a colour atlas
light-colour	$ \mathcal{A}_p $	a subset \mathcal{A}_p in the light set \mathcal{P} such that there is a subset
atlas		\mathcal{A}_x in the object set \mathcal{X} (an object-colour atlas) such that
		$\mathcal{A}_x \times \mathcal{A}_p$ makes a colour atlas
material-	\sim_m	an equivalence relation on the object-colour set \mathcal{C} such that
colour equiv-		the quotient set \mathcal{C}/\sim_m (i.e., the set of \sim_m equivalence
alence		classes) is in a one-to-one correspondence with the object-
		colour atlas \mathcal{A}_x
material		class of material-colour-equivalent object-colours
colour		
material-	$\mathcal{C}_m = \mathcal{C} / \backsim_m$	set of the classes of material-colour-equivalent object-
colour set		colours
material	$M: (\mathcal{X} \times \mathcal{P}) \to \mathcal{C}_m$	map assigning to each object/light pair a material colour
colour map		
asymmetric		two object/light pairs (x_1, p_1) and (x_2, p_2) will make an
object-		asymmetric (i.e., across-illuminant) colour match if and
colour match		only if $M(x_1, p_1) = M(x_2, p_2)$.
atlas sample		a finite sample of elements from an atlas (e.g., an object-
		colour atlas sample is a finite sample of elements from an
		object-colour atlas)