
Input representation

Acoustic encoding

Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCCs) are a popular representation

of the time-varying spectral characteristics of speech signals in Automatic

Speech Recognition. Let st, t = 0, 1, · · · , T be the discrete-time representa-

tion of a continuous speech signal s(t). To account for the tendency that the

energy in speech signals is concentrated in the lower frequencies, the signal

st is first differenced so as to yield ŝt = st − .97 × st−1. From the signal ŝt

overlapping intervals with a duration of 20 ms are extracted by multiplying

ŝt by a Hamming window wt that is shifted in steps of 10 ms:

w(n) = 0.54− 0.46 · cos

(
2 · π · n
K − 1

)
, n = 0, 1, · · · ,K

An utterance with a duration of, for example, 3 s (= 3000 ms) will result in

a sequence of 300 speech frames.

To transform the signal from the time domain into the spectral domain,

a Discrete Fourier Transform (DFT) is calculated for each windowed speech

frame via

|Xf |2 =|
N−1∑
n=0

(ŝ(n) · w(n)) · e−i2π·n·f/N |2 (1)

with N being the number of DFT frequencies (set to 400 in the present

paper). The absolute values of the resulting N/2 Fourier coefficients are

then multiplied by the triangular frequency response of 30 bandpass filters
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with center frequencies defined on the technical Mel frequency scale with

m ≈ 2595 · log10

(
1 + f

700

)
for frequencies f > 700 Hz, and a linear relation

between m and f for frequencies < 700 Hz. This arrangement corresponds

to the frequency resolution of the human auditory system. The weighted

Fourier coefficients are summed to obtain 30 Mel-frequency spectral energy

coefficients, of which the 10-log is taken. Finally, the 30 Mel-spectral power

values MFq are converted to 12 MFCCs by means of an Inverse Discrete

Cosine Transform:

MFFCm =
30∑
q=0

√
2

30
· log(MFq) cos

(
2π · (m− 1) · (q − 1)

2 · 30

)
(2)

with m = 1, 2, · · · , 12. The log-energy is added as the 13th coefficient. The

∆ and ∆∆ coefficients are computed from the 13 coefficients as the linear

regression over time in a sequence of nine adjacent frames. The result is a

39 dimensional vector, updated every 10 ms.

Vector Quantisation

Each time frame of the signal is represented as a set of 13 static MFCC, 13

∆, and 13 ∆∆ coefficients, i.e., a vector consisting of three sets of 13 real

numbers. To limit the number of possible representations Vector Quantisa-

tion (VQ) is applied to the three vectors. To this end, three code books of

150, 150, and 100 labels for the MFCC, ∆, and ∆∆ coefficients, respectively,

were obtained a priori based on conventional k-Means clustering applied to

the MFCC analysis of recordings made of ten native speakers of Dutch, who

read short sentences in a noise-free environment. After the VQ step, each
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speech frame is represented by three VQ labels; one from each of the three

code books. Per code book, the label lj(at) for a speech frame at corresponds

to the index of the code book prototype pi,j that has the smallest Euclidean

distance to at:

lj(at) = argmin
i

(at − pi,j)2, j = 1, 2, 3. (3)

The VQ labels are largely language independent: we experimented with

sets of labels obtained from different languages, and found no differences.

Histogram of Acoustic Co-ocurrences

As a result of the VQ operation, each utterance is represented as a sequence

of triplets of VQ labels. Utterances of unequal duration will result in se-

quences of triples of VQ labels of unequal length. To obtain a fixed-length

representation, the sequence of triples of VQ labels of an utterance is con-

verted into a Histogram of Acoustic Co-occurrences (HAC; (?, ?)). A HAC

representation is a (very high dimensional) vector that contains for each pair

of VQ labels the number of times that these labels co-occur at a distance

of two and at a distance of five frames. Since there are 150 labels for the

static MFCCs, 150 labels for the ∆, and 100 labels for the ∆∆, there are

2× 1502 + 2× 1502 + 2× 1002 possible co-occurrences. This results in HAC
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vectors of the form

Va =



V lag=2
MFCC

·

V lag=5
MFCC

·

V lag=2
∆

·

V lag=5
∆

·

V lag=2
∆∆

·

V lag=5
∆∆



(4)

A signal of 3 s generates close to 600 counts in the 110, 000-dimensional

HAC vector, which amounts to a sparseness of 99.45 % if all these counts fall

into different HAC components. It is likely that some of them co-contribute

to the same component, resulting in sparseness at > 99.45 %. Therefore,

HAC representations of short utterances are extremely sparse.

Meaning encoding

The HAC vectors Va that represents the acoustic information of an utter-

ance are augmented with a (much shorter) extension Vm which represents

the meaning of an utterance. In this paper the meaning of an utterances is

defined as the presence of a specific keyword in that utterance. This infor-

mation can be encoded in a vector with the length of the number of possible
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keywords, with a value of one at the index position of the keyword, and a

value of zero at all other index positions:

Vm[i] =


1 if the utterance contains keyword i

0 otherwise

(5)

Learning and matching: Non-negative Matrix Fac-

torization

Non-negative Matrix Factorization (NMF; ?, ?) is used for learning asso-

ciations between the acoustic and meaning representations and or finding

the best match between learned representations and unknown input during

tests. The general idea, as introduced by ? (?), is as follows: An input

matrix V is of size m× n, with m being the dimension with which percep-

tual input is encoded (here more than 110, 000, as described in the previous

section), and n referring to the number of observations. NMF factorises V

as two much smaller matrices W and H, of size m×r and r×n respectively,

with r � m,n, such that

V ≈W ×H. (6)

This factorisation expresses each column of V in terms of a linear combi-

nation of limited number of vectors in W, whose representational format

is the same as V, but the memory size is limited by the inner dimension

r. The matrix H contains the weights required to represent V in terms of

the contents of W and can be considered as temporary connections between

internal representations.
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The cost function that was used in NMF is the Kullback-Leibler (KL)

divergence, which governs the approximation described in equation ??.

DKL(WH‖V) =
∑
ij

(Vijlog
Vij

(WH)ij
+ (WH)ij −Vij) (7)

The NMF operation is implemented by iteratively applying the following

steps (in the present work we limited the number of operations to 2):

Wik ←Wik

∑
j

Hkj

(
V

WH

)
ij

(8)

Normalise :
∑
i

Wik = 1

Hkj ← Hkj

∑
i

Wik

(
V

WH

)
ij

Normalise :
∑
i

Hik = 1

Incremental learning

Instead of presenting all input at once, as required by the form of NMF

introduced by ? (?), an incremental (adaptive) version of NMF was devel-

oped to mirror learning in a more plausible manner by ? (?). Adaptive

NMF introduces an additional parameter: γ, which represents the weight

of previous updates. The above-described process is adjusted as follows to

process an input vector V from all inputs V.
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With the t’s utterance in a sequence of T utterances in V:

Wt
ik ←Wt

ik

∑
j

Ht
kj

(
V

WH

)t
ij

+ γκ, with κ = Wt−1
ik

(
V

WH

)t−1

ij

H

Normalise:
∑
i

Wt
ik = 1

Hkj ← Hkj

∑
iWik

(
V

WH

)
ij

Normalise:
∑
i

Hik = 1

W0 (at the beginning of learning) and H (for each new utterance) are ini-

tialised with small random numbers using the MatLab function rand(),

which returns a matrix containing pseudorandom values drawn from the

standard uniform distribution on the interval (0,1).

Equalising the contributions of the acoustic and meaning sub-

vectors

Since the meaning part of an input vector vm comprises a much smaller

number of coefficients (equal to the number of keywords in an experiment)

than the acoustic part va (about 200 non-zero coefficients for the MFCC, ∆

and ∆∆ co-occurrences), the contribution of vm to the distance function is

multiplied with a weight factor, which is fixed to 100.

Testing

To test the model, new acoustic input va is approximated using only the

acoustic-encoding part of the memory: Wa, with the KL as cost function
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(see equation ??).

va ≈ (Wa · ĥ) (9)

ĥ is obtained by using the lower two expressions in Eq. (??).

We assess model performance based on the approximated meaning in-

formation of a test utterance, which is obtained using the weights from the

acoustic decoding step in equation ??.

v̂m ≈ (Wm · ĥ) (10)

Simulated listening preferences

Listening preferences for sentences that contain a known word over sentences

that do not contain a known keyword are computed. In this case, NMF is

used to learn the matrix W from input vectors V which are comprised of an

acoustic part va and a meaning part vm. During test the acoustic sub-vector

vua of an utterance u is used to obtain the weight vector ĥu by means of (??),

which is then used to compute the meaning sub-vector v̂um. In the paper a

distinction is made between matching and recognition. The matching score

M s for a sentence s is defined as

Matching: Mu = maxi v̂
u
mi

for any mu
i .

The recognition score Ru for utterance u is defined as the activation of the

keyword that is present in utterance u.

Both Mu and Ru hold for utterance that either contain learned keywords
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or not. In the experiments the preference values are summed over 20 test

utterances for each keyword, measured at 10 points during the learning pro-

cess. With ptkknown the score for a test utterance k at testing moment t that

contains a learned keyword, and ptkunknown for the corresponding test utter-

ance that does not contain a known keyword, and using the same expression

for matching and recognition scores, the final preference score is obtained

from

pref =
10∑
t

20∑
k

ptkknown −
1

3
×

30∑
t

20∑
k

ptkunknown

To account for the fact that three foils are matched to each target word,

the sums over test sentences are divided by 3 for unknown words.
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