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Abstract

How the widespread expansion and intensification of aridity through the Neogene

has shaped the Austral biota is a major question in Antipodean biogeography.

Lineages distributed across wide aridity gradients provide opportunities to examine

the timing, frequency, and direction of transitions between arid and mesic regions.

Here, we use molecular genetics and morphological data to investigate the

systematics and biogeography of a nominal Australian gecko species

(Diplodactylus conspicillatus sensu lato) with a wide distribution spanning most of

the Australian Arid Zone (AAZ) and Monsoonal Tropics (AMT). Our data support a

minimum of seven genetically distinct and morphologically diagnosable taxa; we

thus redefine the type species, ressurrect three names from synonymy, and

describe three new species. Our inferred phylogeny suggests the history and

diversification of lineages in the AAZ and AMT are intimately linked, with evidence

of multiple independent interchanges since the late Miocene. However, despite this

shared history, related lineages in these two regions also show evidence of broadly

contrasting intra-regional responses to aridification; vicarance and speciation in

older and increasingly attenuated mesic regions, versus a more dynamic history

including independent colonisations and recent range expansions in the younger

AAZ.
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Editor: Matthias Stöck, Leibniz-Institute of
Freshwater Ecology and Inland Fisheries,
Germany

Received: May 22, 2014

Accepted: September 5, 2014

Published: December 10, 2014

Copyright: � 2014 Oliver et al. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. All relevant data are within the paper
and its Supporting Information files. Sequence data
has been uploaded to GenBank and the accession
numbers can be found in Table 1.

Funding: This work was supported by Mckenzie
Postdoctoral Fellowship at the University of
Melbourne to Paul Oliver, an Australian Research
Council linage Grant to Paul Oliver, Mike Lee and
Paul Doughty, an Australian Biological Resources
Survey Grant to Mark Hutchinson, Mark Adams,
Paul Oliver and Paul Doughty, and the Queensland
Museum. MP9s contributions were supported by an
Australian Research Council grant to J. Scott
Keogh. The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0111895 December 10, 2014 1 / 53

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0111895&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

The extent and intensity of arid conditions in the Southern Hemisphere has

increased through the late Neogene, and expansive deserts are now a prominent

feature of most southern continents (Africa, Australia and South America) [1–4].

These generally young arid zones are characterised by low, unpredictable rainfall

and strong seasonal variation in temperature, and this major climatic shift has had

profound biological implications; some lineages have adapted to aridity, while

many others have retreated into shrinking mesic refugia or simply gone extinct

[5–10].

In the face of expanding and intensifying aridification, comparatively mesic

environments adjacent to arid areas serve a number of important functions. Over

longer timescales, peripheral semi-arid or seasonally arid areas may provide zones

in which lineages can accumulate preadapations that mediate subsequent

successful colonisation of more arid zones [11, 12]. Over shorter timescales (for

instance the Pleistocene glacial oscillations over the last 2.5 million years)

peripheral habitats may also function as refugia during peaks of aridity, and

subsequently a source of populations able to recolonize the arid zone when

conditions ameliorate [13, 14]. Radiations which now comprise multiple taxa

widely distributed across arid and mesic areas provide powerful oppurtunities to

compare lineage diversity across regions, and test the ideas about when, from

where, and how, lineages colonised (or recolonised) nascent arid biomes

[6, 12, 14–16].

The Australian Arid Zone (AAZ) and Australian Monsoonal Tropics (AMT) are

two of the largest Australian biomes, and share a long border than spans most of

northern Australia [9, 17]. Many lineages occur across both regions, suggesting

there has been significant evolutionary interchange, however only a small number

of studies have examined the diversification of taxa spanning these two areas

[14, 18]. This work has generally supported the hypothesis that lineages in the

AMT are characterised by higher taxonomic or genetic diversity and more narrow

distributions (indicative of persistence and localised diversification), while the

AAZ is inhabited by a smaller number of derived and often relatively widespread

lineages (indicative of colonisation and range expansion) [14, 16, 18]. However

the total number of studies remains few, and broader insight into how often, and

when lineages diversified across these two biomes requires examination of

additional lineages.

Squamates (lizards and snakes) are arguably the most successful vertebrate

group in Australia [19, 20] and are playing a key role in an emerging research

program to understand how aridification has shaped patterns of evolution

[12, 21]. However, while the problem of cryptic diversity within Australian

squamates was flagged over two decades ago [22], ongoing research and new

methods continue to reveal high levels of unrecognised evolutionary diversity (e.g.

[23, 24]). Therefore it is not surprising that systematic work over the last two

decades has also revealed numerous instances where overly conservative

taxonomy has obscured macroevolutionary patterns such as long-term
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persistence, micro-endemism, inter-regional dispersal events, and morphological

stasis (e.g. [6–8, 14, 15, 25–27]).

Diplodactylus conspicillatus Lucas & Frost 1897 [28] is a small (svl ,65 mm),

terrestrial Australian gecko with a distinctive short plump tail (commonly referred

to as the Fat-tailed Gecko). As currently defined this species has one of the widest

distributions of any Australian lizard, and occurs across most of the AAZ and

AMT in a diverse range of habitats, including desert, low open shrubland, low

shrubland, low open woodland, low woodland, woodland and tall shrubland, and

on a wide range of substrates [29]. A published overview of phylogenetic diversity

in the genus Diplodactylus based on mitochondrial DNA, allozymes and

karyotypes revealed nine divergent clades within the D. conspicillatus complex

[30]. Although many of these were represented by few samples, each was

recognised as a ‘candidate species’, pending further morphological and molecular

work. Pepper et al. [24] subsequently presented a more comprehensive sampling

of D. conspicillatus sensu lato in Western Australia, and also found evidence of

deep divergences, including two near parapatric lineages in the Pilbara region.

Here we use an expanded mitochondrial dataset along with detailed

morphological examination to assess how lineages of the D. conspicillatus complex

have diversified across the AAZ and AMT. Specifically we a) contrast genetic

diversity in the two regions, and b) use simple ancestral state reconstruction to

assess the frequency and trajectory of shifts between biomes. Based on these data

we also present a revised taxonomy, formally recognizing seven of the lineages

identified by Oliver et al. [29] as species (redefined Diplodactylus conspicillatus

sensu stricto, resurrected Diplodactylus hillii, D. laevis and D. platyurus and three

newly described species) and thereby add six further species to the diverse

Australian lizard fauna.

Methods

Material examined

This study utilised specimens and tissues held in the Australian Museum (AMS),

National Museum of Victoria (NMV), Northern Territory Museum and Art

Gallery (NTM), Queensland Museum (QM), South Australian Museum (SAMA)

and Western Australian Museum (WAM). Where possible, specimens included in

genetic analyses were also included in morphological analyses. Tissue samples

from nominated holotypes for all three newly described taxa were included in

assessments of genetic diversity.

Morphological characterisation of the types of D. conspicillatus and its

synonyms (as listed in Cogger et al., 1983), D. hillii, Gymnodactylus laevis and

D. platyurus, was made by direct examination (D. conspicillatus [NMV] and D.

hillii [QM]) or using photographic images generously provided by Dr H.G.

Cogger (Gymnodactylus laevis [Naturmuseum Senckenberg, Frankfurt] and D.

platyurus [British Museum of Natural History, London]).
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Genetic data

Genetic analyses included mitochondrial data from 169 specimens of

Diplodactylus conspicillatus sensu lato (see Table 1 for specimen and locality

information). DNA extraction and sequencing protocols for most samples are

detailed elsewhere [25, 31]. DNA from new samples was extracted using a Qiagen

high throughput extraction robot at Museum Victoria. A,1200 base pair (bp)

region of the ND2 gene and surrounding tRNAs was amplified using one of the

following two combinations of primers: 1) AAG CTT TCG GGG CCC ATA CC

(L4437) [32] and CTA AAA TRT TRC GGG ATC GAG GCC (Asn-tRNA) [33]; or

2) GCC CAT ACC CCG AAA ATS TTG and TTA GGGTRG TTA TTT GHG AYA

TKC G [25]. PCR products were amplified for 40 cycles at an annealing

temperature of 55 C̊. Unpurified PCR products were sent to a genetic services

company (Macrogen, Korea) and sequenced in both directions using Sanger

sequencing technologies.

New sequences generated in this study were aligned with data presented by

Oliver et al. [30] and Pepper et al. [24]. Alignment of sequences was first

performed automatically using the software MUSCLE [34], then refined by eye in

Se-Al [35]. We translated nucleotide data into amino acid sequences and checked

the alignment for internal stop codons and frame-shift mutations. Our final

edited alignment included up to 1054 characters. We used the unlinked branch

lengths and BIC settings in PartitionFinder [36] to determine the best partitioning

strategy and model of nucleotide substitution (GTR+I+G, with all codon positions

considered together in a single partition).

Phylogenetic analyses

Phylogenetic relationships were estimated using standard Maximum Likelihood

(RAxML v7.2.8) [37] and Bayesian techniques (BEAST v1.8.0) [38]. All unique

samples were included in initial analyses (Fig. S1), however for subsequent

phylogenetic analyses we focused on a reduced subset of data from which a

number of identical or near identical sequences for the two most extensively

sampled major clades were removed. Maximum Likelihood analyses were run

using the default settings for RAxML on the CIPRES portal; the GTR+G model of

sequence evolution (as preferred by Stamatakis, [37]), and ceasing bootstrapping

when MRE-bootstrapping criteria had been reached.

Bayesian analyses in BEAST used models and partitions as suggested by

Partitionfinder, the Yule speciation prior (appropriate for analyses including

relatively divergent lineages) and a relaxed log-normal clock and with model and

partitions applied as above. After initial experimentation with settings and

sampling, the final MCMC chains were run for 50 million generations, sampling

every 50,000 steps. We estimated a timeframe of divergence using a 3% mean rate

of pairwise sequence divergence (with a range between 1–4%) per one million

years (see Oliver et al. [16] for justification). Tracer v1.5 [39] was used to confirm

stability of parameter estimates and adequate mixing of the MCMC chains, and

determine appropriate burn-in and acceptable effective sample sizes (.200).
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Table 1. Museum Voucher and locality details of all specimens included in phylogenetic analyses.

Museum Number Species Locality Latitude (dec.) Longitude (dec.) Genbank #

WAMR157640 conspicillatus Newman, WA 223.3097 119.7569 KM267082

SAMAR20884 conspicillatus Olympic Dam area, Roxby Downs, SA 230.3833 136.8833 FJ665543

SAMAR45256 conspicillatus Salt Ck Cross E L Gairdner, SA 231.5500 136.3500 FJ665541

SAMAR51587 conspicillatus Amata, SA 226.2828 131.4867 FJ665542

WAMR110770 conspicillatus Jimblebar East, WA 223.4406 120.3333 JX946871

WAMR110769 conspicillatus Jimblebar East, WA 223.3656 120.3211 JX946870

WAMR110762 conspicillatus Jimblebar East, WA 223.3947 120.3097 JX946873

WAMR110767 conspicillatus Jimblebar East, WA 223.3961 120.3100 JX946874

SAMAR46981 conspicillatus Mosquito Camp Dam, SA 226.1578 134.5136 FJ665547

SAMAR26512 conspicillatus Granite Downs Station, WA 226.9500 133.5667 FJ665545

SAMAR26513 conspicillatus Granite Downs Station, WA 226.9500 133.5667 FJ665544

SAMAR51514 conspicillatus 3.3k SW Indulkana, SA 226.9800 133.2700 FJ665546

WAMR136643 conspicillatus Lake Mason Station, WA 227.6975 119.2800 KM267080

WAMR136647 conspicillatus Lake Mason Station, WA 227.7141 119.5311 KM267081

WAMR97324 conspicillatus Mount Windarra, WA 228.4583 122.2417 JX946799

WAMR144640 conspicillatus Kalgoorlie, WA 230.2014 120.9742 JX946847

SAMAR42574 conspicillatus 168 km NE of Emu, SA 228.2333 133.3333 FJ665539

SAMAR32133 conspicillatus Maralinga, SA 230.2503 131.5458 FJ665538

SAMAR62135 conspicillatus 18.4k NE Blackstone, WA 225.8917 128.4269 FJ665520

SAMAR62106 conspicillatus Morgan Range, 16.8k ENE Blackstone, WA 225.9353 128.4378 FJ665523

SAMAR62107 conspicillatus Morgan Range, 16.8k ENE Blackstone, WA 225.9353 128.4378 FJ665522

WAMR166299 conspicillatus Morgan Range, 16.8k ENE Blackstone, WA 225.9353 128.4378 FJ665540

QMJ92288 conspicillatus Mt Isa, QLD 221.1300 139.2500 FJ665534

AMSR125042 conspicillatus Cunnamulla, QLD 228.0667 145.6833 FJ665533

NTMR15362 conspicillatus Lawrence Gorge Waterhouse Range, NT 224.0200 133.4000 FJ665535

SAMAR38849 conspicillatus Namatjira/Larapinta Drive Junction, SA 226.7667 133.4500 FJ665536

NTMR35949 conspicillatus 120 km East of Argadargada, NT 221.2928 137.4100 KM267074

SAMAR38782 conspicillatus Tennant Creek, NT 219.6667 134.2333 FJ665537

SAMARR38819 conspicillatus Three Ways, NT 219.4333 134.2167 EF681786

NTMR24076 conspicillatus Arafura Swamp Arnhem Land, NT 212.5300 134.9000 FJ665532

WAMR110769 conspicillatus Jimblebar East, WA 223.3656 120.3211 KM267078

WAMR110770 conspicillatus Jimblebar East, WA 223.4406 120.3333 KM267079

WAMR110762 conspicillatus Jimblebar East, WA 223.3947 120.3097 KM267076

WAMR110767 conspicillatus Jimblebar East, WA 223.3961 120.3100 KM267077

WAMR97324 conspicillatus Mount Windarra, WA 228.4583 122.2417 KM267075

WAMR144640 conspicillatus Kalgoorlie, WA 230.2014 120.9742 KM267083

NTMR21395 barraganae Mussellbrook, QLD 218.6083 137.9883 FJ665515

NTMR17871 hillii Corroboree Taven, NT 212.7500 131.4833 EF681785

WAMR162453 custos West Kununurra, WA 215.7700 128.6700 JX946794

WAMR172853 custos Ellenbrae Station, WA 215.9839 127.0539 KM267051

WAMR164780 custos The Grotto, WA 215.7178 128.2597 KM267049

WAMR132713 custos Wyndham, WA 215.7119 128.2656 JX946822

WAMR172916 custos Doongan Station, WA 15.2290 125.2084 KM267052

WAMR172675 custos Irvine Island, WA 16.3353 124.0528 KM267050
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Table 1. Cont.

Museum Number Species Locality Latitude (dec.) Longitude (dec.) Genbank #

CM1800 custos Adcock Gorge, WA 216.9267 125.7795 KM267048

AMSR143914? platyurus 16.6 km W Georgetown on Croydon Rd, QLD 218.2925 143.4014 FJ665514

AMSR143909 platyurus 9.3 km W Normanton P.O via Cloncurry Rd, QLD 217.7300 141.0300 FJ665512

AMSR143911 platyurus 8.2 km W Normanton P.O via Cloncurry Rd, QLD 217.7300 141.0300 FJ665511

AMSR143916 platyurus 8.4 km W of Georgetown on Croydon Rd, QLD 218.2800 143.4700 FJ665513

QMJ92887 platyurus Winton, QLD 222.4700 142.9200 FJ665530

SAMAR63336 platyurus Winton, QLD 222.4500 142.9500 FJ665531

ABTC31900 platyurus Noonbah Station, QLD 224.1200 143.1800 FJ665528

AMSR143856 platyurus Stonehenge area, QLD 224.3700 143.3200 FJ665527

AMSR158426 platyurus Sturt National Park, NSW 229.3700 142.0300 FJ66552

QMJ92287 platyurus Mingella, QLD 219.8700 146.6300 FJ665526

SAMAR63337 platyurus Mingella, QLD 219.8700 146.6300 FJ665525

WAMR135321 bilybara Cape Lambert, WA 220.7544 117.0811 JX946823

WAMR140334 bilybara Millstream-Chichester National Park, WA 221.4619 117.1625 JX946838

WAMR132531 bilybara Burrup Peninsula, WA 220.6767 116.7522 JX946814

WAMR132529 bilybara Burrup Peninsula, WA 220.6803 116.7436 JX946813

WAMR112197 bilybara Onslow Area, WA 221.6758 115.1458 KM267032

WAMR102917 bilybara Cane River, WA 222.1992 115.5486 JX946835

WAMR174500 bilybara Barradale, WA 222.9167 114.7667 FJ665517

WAMR158333 bilybara Giralia Homestead, WA 222.6939 114.3911 JX946861

WAMR157275 bilybara Yanrey Station, WA 222.2675 114.5228 JX946865

WAMR157302 bilybara Yanrey Station, WA 222.1578 114.5286 JX946867

WAMR126821 bilybara Bush Bay, WA 225.1258 113.8228 KM267035

WAMR120671 bilybara Mardathuna Homestead, WA 224.4069 114.4731 JX946795

WAMR127701 bilybara Mount Tom Price Mine, WA 222.8111 117.7675 JX946796

WAMR157533 bilybara Robe River, WA 221.7478 116.0753 JX946856

WAMR119206 bilybara Carey Downs Homestead, WA 225.5333 115.4667 JX946787

WAMR165713 bilybara Jack Hills, WA 226.0567 117.2161 JX946876

WAMR141359 bilybara Cape Preston Area, WA 221.0164 116.1956 JX946843

WAMR145193 bilybara Learmonth Airstrip, WA 222.2431 114.0347 JX946848

WAMR102503 bilybara Barlee Range Nature Reserve, WA 223.1017 116.0078 JX946784

WAMR126769 bilybara Mardathuna Homestead, WA 224.5114 114.6367 JX946773

WAMR126770 bilybara Boolathana Homestead, WA 224.4131 113.6631 JX946774

WAMR126821 bilybara Bush Bay, WA 225.1258 113.8228 JX946775

WAMR126827 bilybara Boolathana Homestead, WA 224.4131 113.7067 JX946776

WAMR158331 bilybara Giralia Homestead, WA 222.6939 114.3911 JX946860

WAMR158333 bilybara Giralia Homestead, WA 222.6939 114.3911 KM267045

WAMR158335 bilybara Giralia Homestead, WA 222.6939 114.3911 JX946862

WAMR158349 bilybara Giralia Station, WA 222.7844 114.2792 JX946863

WAMR157275 bilybara Yanrey Station, WA 222.2675 114.5228 KM267042

WAMR157276 bilybara Yanrey Station, WA 222.2997 114.5931 JX946866

WAMR157302 bilybara Yanrey Station, WA 222.1578 114.5286 KM267043

WAMR126859 bilybara Bush Bay, WA 225.1258 113.8228 JX946777

WAMR156243 bilybara Onslow Area, WA 221.6886 115.0925 JX946872
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Table 1. Cont.

Museum Number Species Locality Latitude (dec.) Longitude (dec.) Genbank #

WAMR151061 bilybara Carnarvon, WA 224.8833 113.7667 JX946875

WAMR165713 bilybara Jack Hills, WA 226.0567 117.2161 KM267046

WAMR102477 bilybara Barlee Range Nature Reserve, WA 223.0447 115.7872 JX946781

WAMR102478 bilybara Barlee Range Nature Reserve, WA 223.0447 115.7872 JX946782

WAMR102480 bilybara Barlee Range Nature Reserve, WA 223.0447 115.7872 JX946783

WAMR102503 bilybara Barlee Range Nature Reserve, WA 223.1017 116.0078 KM267030

WAMR123119 bilybara Bush Bay, WA 225.1258 113.8228 JX946785

WAMR122888 bilybara Mardathuna Homestead, WA 224.4069 114.4731 JX946786

WAMR119206 bilybara Carey Downs Homestead, WA 225.5333 115.4667 KM267033

WAMR127498 bilybara Onslow, WA 221.7333 115.0833 JX946788

WAMR127520 bilybara Onslow, WA 221.7333 115.0833 JX946789

WAMR120700 bilybara Boolathana Homestead, WA 224.4131 113.7067 JX946791

WAMR120671 bilybara Mardathuna Homestead, WA 224.4069 114.4731 KM267034

WAMR127701 bilybara Mount Tom Price Mine, WA 222.8111 117.7675 KM267036

WAMR132529 bilybara Burrup Peninsula, WA 220.6803 116.7436 KM267037

WAMR132531 bilybara Burrup Peninsula, WA 220.6767 116.7522 KM267038

WAMR132532 bilybara Burrup Peninsula, WA 220.6767 116.7522 JX946815

WAMR135321 bilybara Cape Lambert, WA 220.7544 117.0811 KM267039

WAMR135378 bilybara Mt Brockman, WA 222.4197 117.4300 JX946824

WAMR135406 bilybara Mt Brockman, WA 222.3500 117.3500 JX946825

WAMR135408 bilybara Mt Brockman, WA 222.4197 117.4300 JX946826

WAMR135431 bilybara Mt Brockman, WA 222.4197 117.4300 JX946827

WAMR135455 bilybara Mount Brockman Area, WA 222.4667 117.3000 JX946828

WAMR113620 bilybara Nanutarra, WA 222.4167 115.6167 JX946830

WAMR113621 bilybara Nanutarra, WA 222.4167 115.6167 JX946831

WAMR113635 bilybara Nanutarra, WA 222.4167 115.6167 JX946832

WAMR102917 bilybara Cane River, WA 222.1992 115.5486 KM267031

WAMR102945 bilybara Cane River, WA 222.1992 115.5486 JX946836

WAMR102946 bilybara Cane River, WA 222.1992 115.5486 JX946837

WAMR140334 bilybara Millstream-Chichester National Park, WA 221.4619 117.1625 JX946838

WAMR140980 bilybara Urala Station, WA 221.7767 114.8719 JX946841

WAMR141359 bilybara Cape Preston Area, WA 221.0164 116.1956 KM267041

WAMR139168 bilybara Burrup Peninsula, WA 220.6500 116.7667 JX946844

WAMR145193 bilybara Learmonth Airstrip, WA 222.2431 114.0347 KM267047

WAMR112197 bilybara Onslow Area, WA 221.6758 115.1458 JX946850

WAMR157533 bilybara Robe River, WA 221.7478 116.0753 KM267044

WAMR158325 bilybara Giralia Homestead, WA 222.6939 114.3911 JX946857

WAMR158327 bilybara Giralia Homestead, WA 222.6939 114.3911 JX946858

WAMR158330 bilybara Giralia Homestead, WA 222.6939 114.3911 JX946859

SAMAR49077 laevis 1.7k NE Candradecka Dam, SA 227.2000 140.8700 FJ665550

SAMAR49081 laevis 1.7k NE Candradecka Dam, SA 227.2000 140.8700 FJ665549

SAMAR29936 laevis Curtin Springs, NT 225.5200 131.8200 FJ665544

WAMR166303 laevis 3.2k N Pungkulpirri Waterhole, Walter James Range,
WA

224.6286 128.7556 FJ665551
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Table 1. Cont.

Museum Number Species Locality Latitude (dec.) Longitude (dec.) Genbank #

SAMAR36126 laevis Yulara, NT 225.2300 131.0200 FJ665553

WAMR111703 laevis Wheelara Hill, WA 223.3644 120.3450 KM267059

WAMR161577 laevis Port Hedland, WA 220.3464 118.89301 KM267069

WAMR161601 laevis Goldsworthy, WA 220.2419 119.5740 KM267070

WAMR157018 laevis Fortescue Marsh, WA 222.4592 119.0364 KM267067

WAMR157131 laevis Roy Hill, WA 222.6542 120.4097 JX946864

WAMR168480 laevis Coulomb Point, WA 217.5736 122.1694 KM267072

WAMR132176 laevis Nifty Mine, WA 221.6667 121.5833 KM267062

WAMR139264 laevis Meentheena, WA 221.2869 120.4594 JX946845

WAMR145516 laevis Port Hedland, WA 221.0600 118.7500 JX946849

WAMR102048 laevis Strelley Homestead, WA 220.3667 119.0167 JX946801

WAMR104056 laevis Woodstock, WA 221.6706 119.0417 JX946807

WAMR102054 laevis Mundabullangana, WA 220.7500 118.2500 JX946802

ABTC60729 laevis 30 km SW Sangster’s Bore, NT 221.0200 130.1300 FJ665554

WAMR114921 laevis Capricorn Roadhouse, WA 223.7167 119.7167 JX946779

WAMR166625 laevis Mons Cupri Mine, WA 220.8664 117.8219 JX946877

WAMR161868 laevis Marble Bar, WA 221.4264 119.5530 KM267071

WAMR137010 laevis Wanjarri Nature Reserve, WA 227.3500 120.7667 JX946833

WAMR119777 laevis Tehan Rockface, WA 227.0333 124.7833 JX946790

WAMR110626 laevis Tanami Desert, WA 219.8944 128.8339 JX946868

WAMR94956 laevis Well 39, Canning Stock Route, WA 221.7833 125.6500 JX946798

WAMR102637 laevis Little Sandy Desert, WA 224.0753 120.3606 JX946780

ABTC41350 laevis 134 km ENE Laverton, WA 228.1700 123.6700 FJ665547

WAMR157131 laevis Roy Hill, WA 222.6542 120.4097 KM267068

WAMR110626 laevis Tanami Desert, WA 219.8944 128.8339 KM267058

WAMR110758 laevis Jimblebar East, WA 223.3656 120.3303 JX946869

WAMR166625 laevis Mons Cupri Mine, WA 220.8664 117.8219 KM267073

WAMR166480 laevis Port Hedland, WA 220.3697 119.6333 JX946879

WAMR113039 laevis Lesley Salt Works, WA 220.2833 118.8944 JX946778

WAMR114921 laevis Capricorn Roadhouse, WA 223.7167 119.7167 KM267060

WAMR102637 laevis Little Sandy Desert, WA 224.0753 120.3606 KM267056

WAMR119777 laevis Tehan Rockface, WA 227.0333 124.7833 KM267061

WAMR119956 laevis Woodie Woodie Mine, WA 221.6667 121.5833 JX946792

WAMR157395 laevis Tanami Desert, WA 219.6647 128.8858 JX946793

WAMR90895 laevis Woodstock, WA 221.6117 118.9556 JX946797

WAMR94956 laevis Well 39, Canning Stock Route, WA 221.7833 125.6500 KM267053

WAMR99143 laevis Woodstock Station, WA 221.6097 118.9622 JX946800

WAMR102048 laevis Strelley Homestead, WA 220.3667 119.0167 KM267054

WAMR102054 laevis Mundabullangana, WA 220.7500 118.2500 KM267055

WAMR104021 laevis Woodstock, WA 221.6117 118.9556 JX946803

WAMR104047 laevis Woodstock, WA 221.6117 118.9556 JX946804

WAMR104050 laevis Woodstock, WA 221.6092 118.9742 JX946805

WAMR104051 laevis Woodstock, WA 221.6092 118.9742 JX946806

WAMR104056 laevis Woodstock, WA 221.6706 119.0417 KM267057
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Maximum clade credibility trees, after exclusion of the first ten million

generations (20%), were summarized with TreeAnnotator v1.7.2 [38].

Biome evolution

Ancestral state analyses were coestimated with topology and divergence dates in

BEAST. To assess the number and nature of transitions between biomes, each

node was coded as to whether the corresponding specimen was from within (1) or

outside (0) the AAZ (defined here by a moisture index [mean annual rainfall

divided by evaporation] of less than 0.4 [9]; Fig. 1, dotted line). The biome state of

all outgroups was coded as ambiguous because: a) basal relationships within

Diplodactylus were unresolved, and b) some of these taxa occur in the temperate

biome, while this study is focused on transistions between the AMT and AAZ. The

pattern of biome evolution was estimated using a simple substitution model for

binary data which assumes equal probabilities for transitions between all states

[40].

Table 1. Cont.

Museum Number Species Locality Latitude (dec.) Longitude (dec.) Genbank #

WAMR104061 laevis Woodstock, WA 221.6092 118.9742 JX946808

WAMR104158 laevis Woodstock, WA 221.6092 118.9742 JX946809

WAMR108856 laevis Mount Spinifex, WA 220.7833 118.1167 JX946810

WAMR113068 laevis Lesley Salt Works, WA 220.3194 118.9000 JX946811

WAMR104059 laevis Woodstock, WA 221.6094 118.9619 JX946812

WAMR132546 laevis Degrey River Station, WA 220.2803 119.2019 JX946816

WAMR132175 laevis Nifty Mine, WA 221.6667 121.5833 JX946817

WAMR132176 laevis Nifty Mine, WA 221.6667 121.5833 JX946818

WAMR132177 laevis Nifty Mine, WA 221.6667 121.5833 JX946819

WAMR132178 laevis Nifty Mine, WA 221.6667 121.5833 JX946820

WAMR132689 laevis Shay Gap, WA 220.5778 120.3331 JX946821

WAMR113612 laevis Newman, WA 223.0175 119.8906 JX946829

WAMR137010 laevis Wanjarri Nature Reserve, WA 227.3500 120.7667 KM267064

WAMR138110 laevis Nifty Copper Mine, WA 221.6667 121.5833 JX946834

WAMR140708 laevis Hope Downs, WA 222.7328 119.4086 JX946839

WAMR140712 laevis Hope Downs, WA 222.8369 119.3758 JX946840

WAMR139020 laevis Mandora, WA 219.8122 121.4736 JX946842

WAMR139264 laevis Meentheena, WA 221.2869 120.4594 KM267065

WAMR139283 laevis Meentheena, WA 221.2900 120.4664 JX946846

WAMR145516 laevis Port Hedland, WA 221.0600 118.7500 KM267066

WAMR153889 laevis WeeliWolli Creeck, WA 222.8208 119.2869 JX946851

WAMR157003 laevis Fortescue Marsh, WA 222.4144 119.0067 JX946852

WAMR157018 laevis Fortescue Marsh, WA 222.4592 119.0364 JX946853

WAMR157024 laevis Fortescue Marsh, WA 222.4592 119.0364 JX946854

WAMR157500 laevis Fortescue Marsh, WA 222.4592 119.0364 JX946855

doi:10.1371/journal.pone.0111895.t001
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Population genetics

To infer past demographic fluctuations in response to the climate cycles of the

Pleistocene, we calculated nucleotide diversity and tested for population size

change using the basic population genetic measurements of Tajima’s D [41], Fu’s

Fs [42] and R2 [43] as implemented in DnaSP v. 5.0 [44]. Estimates and

significance were calculated with 1000 coalescent simulations against the null

hypothesis of a constant population size model, for each population corre-

sponding to the phylogenetically distinct groups based on the mtDNA gene tree.

As these historical inferences were based on data from the mitochondrial genome,

Figure 1. Distribution of genetically sampled individuals for major genetic lineages in the D. conspicillatus complex. Pink 5D. custos sp. nov., Blue
5D. hillii, Green 5D. barraganae sp. nov., Purple 5D. platyurus (circle 5 lineage F, star 5 lineage G, squares 5 lineage H), Red 5D. conspicillatus
(squares 5 northern lineage, circles 5 southern lineage), White 5D. laevis, Yellow 5D. bilybara sp. nov. The dashed line corresponds to the transition
between regions with a moisture index (mean annual rainfall divided by evaporation) less than 0.4 (arid) to greater than 0.4 (semiarid to mesic) and is widely
used as an approximate boundary of the Australian Arid Zone. Inset map on the top left corner indicates putative regions of endemism mentioned in the text;
P5 Pilbara, K5 Kimberley, TE5 ‘‘Top End’’, G5 Gulf country.

doi:10.1371/journal.pone.0111895.g001
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they should be regarded as a preliminary framework requiring corroboration with

appropriate nuclear loci. For major clades intra and inter-specific genetic

distances were estimated using Arlequin v. 3.11 [45].

Morphometrics

All measurements (except SVL) and bilateral counts were recorded from the left

side. The following measurements were taken using Mitutoyo electronic callipers:

snout to vent length (SVL), tip of snout to anterior margin of cloaca with body

straightened; tail length (T), from posterior margin of cloaca to tip of tail; tail

width (TW), widest point across original tail; head length (HL), mid anterior

margin of ear to tip of snout; head width (HW), widest point of head, usually

Figure 2. Phylogenetic summaries. (A) Maximum likelihood phylogeny based on the mtDNA gene nd2 estimated using RaxML for all major lineages within
the D. conspicillatus complex. Lineage names A–H follow Oliver et al. 2009. Clades are colour-coded to match distributions in Figs. 1 and 3. Nodes with ML
support above 95 and Bayesian support (BEAST) above 99 (respectively) are indicated with an asterisk (*). (B) Chronogram and ancestral biome states for
the seven species in the revised D. conspicillatus group estimated using BEASTand calibrated with a 3% pairwise mean rate of molecular evolution. Green
lineages are from outside the central Australian arid zone (defined by a moisture index of less than 0.4), brown lineages are from inside the Australian arid
zone, and the probability (i.e. percentage of reconstructions that feature the observed state) of the inferred ancestral habitat is indicated for major nodes.

doi:10.1371/journal.pone.0111895.g002
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corresponding with, or slightly posterior to, position of ear opening; head depth

(HD), lower jaw to top of head at mid orbit; snout length (S), tip of snout to

anterior margin of orbit; eye to ear (EE), posterior margin of orbit to mid anterior

margin of ear; length of forelimb (L1) and hindlimb (L2), from insertion to tip of

longest digit (claw included), with limb stretched straight perpendicular to body;

and (AG) axilla to inguinal region with body straightened.

The following scale counts and characters were recorded: subdigital scales from

tip of digit (4th finger, 4th toe) to basal junction of 3rd and 4th digits (series

includes enlarged distal pair); supralabial and infralabial scale rows (beginning

Figure 3. Distribution of species in the Diplodactylus conspicillatus complex based on morphological analyses of holdings in Australian
museums. Pink 5D. custos sp. nov., Blue 5D. hillii, Green 5D. barraganae sp. nov., Purple 5D. platyurus, Red 5D. conspicillatus, White 5D. laevis,
Yellow 5D. bilybara sp. nov. Dashed lines indicate approximate locations of biogeographic breaks mentioned in the text.

doi:10.1371/journal.pone.0111895.g003
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immediately posterior to rostral and mental scales, and terminating where there is

a noticeable reduction in size, or the labial scales begin to pull away from the lip

line [approximately level with mid orbit]); number of small scales contacting the

posterior edges of the rostral and mental scales; the number of scales in a

longitudinal series along the length of the original tail (along vertebral line); the

number of scales across the original tail (transverse count taken across the large

scale row closest to widest point of tail); the size of the back, nape and head scales

(relative to flank and lateral neck scalation); the presence or absence of a small

medially projecting process on the posterior edge of the mental; and finally, the

size of the 1st supralabial in relation to the rest of the supralabial row. Specimens

included in the morphometric assessment are listed within the species accounts.

Additional material examined is listed in Appendix S1.

Nomenclatural acts

The electronic edition of this article conforms to the requirements of the amended

International Code of Zoological Nomenclature, and hence the new names

contained herein are available under that Code from the electronic edition of this

article. This published work and the nomenclatural acts it contains have been

registered in ZooBank, the online registration system for the ICZN. The ZooBank

LSIDs (Life Science Identifiers) can be resolved and the associated information

viewed through any standard web browser by appending the LSID to the prefix

"http://zoobank.org/". The LSID for this publication is: urn:lsid:zoobank.org:pub:

C410144B-EC99-4AA4-8780-A2858356CF32. The electronic edition of this work

was published in a journal with an ISSN, and has been archived and is available

from the following digital repositories: PubMed Central, LOCKSS.

Results

Phylogenetic relationships

Monophyly of D. conspicillatus sensu lato was strongly supported in all analyses (

Fig. 2A–B). Within this clade we identified the nine major lineages corresponding

to the candidate species identified by Oliver et al. [30], specifically; D.

conspicillatus sensu stricto - widespread in the arid zone and extending into the

AMT; lineage A - Gulf region, north Queensland; lineage B - western Pilbara and

Carnarvon region, Western Australia; lineage C - widespread arid zone; lineage D

– western Top End, Northern Territory; lineage E - Kimberley, Western Australia;

lineage F - Channel Country, western and central Queensland and far north-west

New South Wales; lineage G - around Townsville, Queensland; and lineage H -

gulf country, north Queensland (Fig.1). Monophyly of all major clades is strongly

supported, and mean uncorrected genetic divergence between lineages is relatively

high (11.3–22.5%) (Table S1A). Lineages B, C, D and E form a clade that is well

supported as sister to another clade comprising D. conspicillatus sensu stricto and

lineage A. Collectively these clades (D. conspicillatus sensu stricto and A–E) are well
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Table 2. Summary of key meristic and mensural data for species in the D.conspicillatus complex.

Character D. conspicillatus D. hillii D. laevis D. platyurus
D. barraganae sp.
nov.

D. bilybara sp.
nov.

D. custos sp.
nov.

SVL 54.4¡4.0 46.3¡5.5 54.9¡4.7 48.7¡5.2 41.8¡6.8 48.8¡5.2 50.6¡5.8

(47.1–62.7, n532) (25.1–52.3,
n519)

(42.4–64.9,
n530)

(40.6–60.2,
n536)

(25.1–49.5, n517) (39.2–60.8,
n528)

(42.2–58.2,
n513)

AG (% SVL) 50.4¡0.0 48.5¡0.0 51.8¡0.0 48.8¡0.0 49.9¡0.0 49.6¡0.0 49.3¡0.0

(45.7–57.4, n532) (43.9–56.2,
n519)

(46.0–57.3,
n530)

(42.4–56.4,
n532)

(45.1–55.8, n517) (44.6–54.2,
n527)

(45.7–52.8,
n510)

Forelimb (% SVL) 30.7¡0.0 31.7¡0.0 29.5¡0.0 32.43¡0.0 32.8¡0.0 31.1¡0.0 31.1¡0.0

(27.7–34.0, n532) (29.2–36.0,
n519)

(25.1–33.9,
n530)

(28.1–37.3,
n534)

(29.8–35.0, n517) (24.9–35.9,
n528)

(26.8–35.6,
n513)

Hindlimb (% SVL) 33.5¡0.0 34.0¡0.0 32.4¡0.0 35.8¡0.0 36.0¡0.0 33.7¡0.0 33.5¡0.0

(28.7–37.3, n532) 30.4–37.9,
n518)

(27.8–39.0,
n530)

(30.6–40.8,
n535)

(33.0–38.8, n517) (27.5–38.8,
n528)

(28.1–39.8,
n513)

Tail (% SVL) 39.6¡0.0 34.4¡0.0 45.7¡0.0 35.7¡0.0 36.7¡0.0 43.9¡0.0 42.1¡0.0

(32.3–44.3, n528) (30.6–39.3,
n519)

(36.7–52.3,
n526)

(28.4–42.6,
n530)

(30.1–43.3, n514) (33.9–48.3,
n522)

(34.9–51.3,
n511)

HW (% HL) 80.9¡0.1 74.5¡0.1 90.9¡0.1 81.5¡0.0 81.1¡0.1 87.1¡0.0 81.5¡0.1

(68.5–91.6, n532) 64.2–85.2,
n518)

(79.4–98.7,
n529)

(73.3–89.4,
n533)

(73.1–92.9, n517) (79.9–92.1,
n528)

(73.7–89.1,
n512)

HD (% HL) 50.2¡0.0 47.9¡0.0 54.0¡0.0 47.1¡0.1 47.7¡0.0 49.8¡0.0 47.3¡0.0

(43.6–55.5, n532) (43.8–54.4,
n519)

(47.8–64.0,
n530)

(36.0–54.4,
n533)

(40.1–53.4, n517) (43.7–55.7,
n528)

(42.5–52.5,
n512)

Snout (% HL) 46.6¡0.0 47.0¡0.0 46.0¡0.0 45.0¡0.0 46.5¡0.0 45.3¡0.0 44.5¡0.0

(42.8–52.0, n532) (44.6–50.5,
n519)

(42.7–49.7,
n530)

(42.0–47.6,
n537)

(42.7–53.4, n517 (43.3–47.9,
n528)

(38.8–48.3,
n512)

EE (% HL) 28.6¡0.0 25.9¡0.0 29.6¡0.0 26.8¡0.0 27.0¡0.0 28.2¡0.0 27.6¡0.0

(25.4–31.5, n532) (21.8–30.4,
n519)

(24.2– 34.6,
n530)

(23.4–32.8,
n533)

(24.8–30.4, n517) (24.5–33.5,
n528)

(24.3–30.4,
n512)

Rostral contact 5.2¡0.5 5.0¡0.0 5.1¡0.3 8.7¡1.7 5.1¡0.4 5.3¡0.5 5.6¡0.9

(5–7, n532) (5, n519) (5–6, n530) (5–13, n535) (5–6, n517) (5–6, n528) (5––8, n514)

Mental contact 11.2¡1.0 10.1¡1.1 12.1¡1.5 10.6¡1.5 11.1¡1.1 11.3¡1.2 12.3¡1.5

(9–13, n532) (8–12, n519) (10–15, n530) (8–15, n536) (10–14, n517) (9–14, n528) (10–15,
n516)

Supralabials 15.6¡2.2 18.4¡2.2 15.6¡2.2 15.5¡1.6 17.4¡1.4 16.8¡1.9 15.9¡1.1

(12–20, n532) (14–24, n518) (12–20, n532) (11–19, n537) (15–19, n517) (13–20, n527) (14–18,
n515)

Infralabials 14.9¡2.3 17.4¡2.5 15.7¡2.2 15.8¡1.7 16.2¡1.0 17.0¡2.7 16.9¡2.7

(10–19, n532) (13–21, n516) (11–20, n530) (12–20, n537) (13–18, n517) (12–21, n527) (13–21,
n514)

lamellae finger 4 11.1¡0.9 11.8¡1.0 11.5¡1.0 10.9¡1.1 10.9¡1.4 11.5¡1.7 11.0¡1.6

(10–13, n532) (10–14, n519) (10–13, n529) (9–13, n535) (8–14, n517 (8–15, n528) (9–16, n515)

Lamellae toe 4 12.7¡1.2 13.1¡0.9 13.6¡1.1 11.9¡1.2 12.2¡1.4 13.2¡1.5 11.9¡1.2

(11–16, n532) (12–15, n519) (11–16, n529) (9–15, n536) (10–15, n517) (10–17, n528 (10–15,
n515)

TW/TL 46.7¡0.0 54.6¡0.1 44.9¡0.1 60.8¡0.1 54.6¡0.1 46.7¡0.0 46.0¡0.1

(39.7–56.4, n528) (40.4–72.5,
n518)

(34.4–58.5,
n526)

(44.3–78.8,
n530)

(46.8–63.8, n514) (41.2–58.1,
n522)

(35.0–54.7,
n510)

Scale rows on tail 32.7¡2.5 25.6¡2.3 43.0¡2.5 25.1¡3.2 34.9¡2.4 40.1¡4.7 33.4¡3.9
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supported as sister to the most divergent clade of the complex which contains

lineages F–H from eastern Australia.

Divergence dates and biome evolution

Topology and support values for the phylogeny of the D. conspicillatus complex

co-estimated by BEAST were congruent to those from RAxML (Fig. 2A–B). Age

estimates derived from application of a mean pairwise sequence divergence rate of

3% per million years suggests the deepest divergences within the complex

(including the majority of the lineages and major clades discussed above)

occurred in the late Miocene (,5–10mya). Where dense sampling was avaliable

the accumulation of diversity within most candidate species is estimated to have

occurred during the Pleistocene, with the exception of the clade comprising

lineages F–H which includes a number of deep and relatively poorly sampled

lineages distributed across Queensland.

Distributional data based on morphotyped samples indicates that of the nine

major lineages in the D. conspicillatus complex, five (A, D, E, G and H) are absent

from the central arid zone (and are mostly restricted to the AMT), two (D.

conspicillatus sensu stricto and F) occur in the both AMT and AAZ, and two

(lineages B and C) are restricted to the AAZ (although the range of the former is

centred on the comparatively mesic Pilbara [see discussion below]) (Fig. 3).

Support for most ancestral state reconstructions was relatively weak, but our

results suggest that monsoonal environments are ancestral and also provide strong

evidence that there have been multiple transitions between the arid and

monsoonal areas (Fig. 2B).

Table 2. Cont.

Character D. conspicillatus D. hillii D. laevis D. platyurus
D. barraganae sp.
nov.

D. bilybara sp.
nov.

D. custos sp.
nov.

(28–39, n528) (23–30, n519) (37–50, n528) (20–34, n533) (31–39, n514) (31–49, n523) (28–41,
n512)

Scales across tail 12.7¡0.9 11.8¡1.5 14.2¡1.3 13.2¡1.5 13.9¡1.4 13.2¡1.3 12.9¡0.9

(12–15, n528) (10–15, n518) (12–19, n528) (10–18, n533 (12–16, n514) (10–15, n524) (12–14,
n512)

Canthal stripe bold,
clearly defined

Yes Yes Yes No Yes Yes Yes

1st supralabial large
(contacting nasal)

Yes Yes Yes No Yes Yes Yes

Tail shape Spade-like Spade-like Attenuated tip spade-like spade-like Attenuated tip Attenuated tip

Tail scales in rows Yes No Yes Yes Yes Yes Yes

Mid dorsal scales
enlarged

Yes No Yes Yes No Yes Yes

Scales on nape
enlarged

No No Yes No No No No

doi:10.1371/journal.pone.0111895.t002
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Population genetics

Genetic sampling for a number of lineages was sparse, and only D. conspicillatus

sensu stricto (n528), lineage B (n560) and lineage C (n562) were well sampled

with good geographic spread across their distributions (Table S1B). Diplodactylus

conspicillatus sensu stricto included two divergent sublineages (.10% divergence)

with distributions in arid and monsoonal areas of Queensland and the Northern

Territory, and in arid South Australia and Western Australia, respectively. These

two sublineages also showed evidence of further structure (especially the north

Figure 4. Variation in snout colouration and scalation. (A) Canthal stripe present (D. conspicillatus SAMA
R32133); (B) Canthal stripe absent or very weakly developed (D. platyurus AMS R158426). Condition A
applies to all members of the D. conpicillatus group except D. platyurus. (C) 1st supralabial (1) greatly
enlarged and contacting nasal scale (N) (D. conspicillatus SAMA R42589); (D) 1st supralabial (1) not enlarged
and widely separated from ventral edge of nasal scale (N) (D. platyurus AMS R 158426). Condition C is found
in all members of the D. conspicillatus group except D. platyurus. Note in images C & D that R5 rostral scale
(Images: A & B Jeff Wright, QM; C & D Geoff Thompson, QM).

doi:10.1371/journal.pone.0111895.g004
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sublineage which showed mean genetic divergence of 6.7%). Lineage B showed

low structure across its distribution in the western/southern Pilbara and

Carnarvon Basin (mean 1.3%), while lineage C was characterised by moderate

mitochondrial haplotypic diversity (mean 3.9%), especially in the western edge of

its range in the northeastern Pilbara and surrounding regions.

Our analyses of population size change using summary statistics indicate that

lineages B and C from the AAZ both had significant and large negative values for

Fu’s Fs (233.0 and 214.3, respectively) – consistent with a signature of

contiguous range expansion [42]. Tajima’s D measurements were significantly

negative only for lineage B. The other widespread arid zone lineage D.

conspicillatus sensu stricto had small negative values (22.55), however these

measurements were again not significant. There was no evidence of deviation

Figure 5. Variation in dorsal scalation. Arrangement of scales on neck and back of head – (A) scales small,
only slightly larger those on side of neck (D. conspicillatus SAMA R42569); B) D. laevis (SAMA R56481)
scales on nape and back of head large and plate-like and continuous with enlarged dorsal scales on trunk.
Condition A applies to all members of the D. conspicillatus group except D. laevis. (C) Plate-like vertebral
scales (1), appreciably larger than those of dorsolateral area (2) (D. conspicillatus SAMA R42569); (D) Dorsal
scales granular, those of vertebral area (1) not appreciably larger than those of the dorsolateral area (2) (D.
hillii NTM R27363). Condition D only occurs in D. hillii and D. barraganae sp. nov. (Images: A–C, Jeff Wright
QM; D, Peter Waddington QM).

doi:10.1371/journal.pone.0111895.g005
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from neutral expectations in the largely AMT lineages E or F–H (considered

together), which can be interpreted demographically as stable populations in

mutation-drift equilibrium [42] (Table S1C). As sampling for all of these northern

lineages was very sparse these results should be interpreted with caution.

Morphology

Morphological analyses of genotyped specimens revealed a suite of characters that

diagnosed most of the major lineages identified (see Table 2): the presence or

absence of a) a well developed canthal stripe (Fig. 4A–B), b) an enlarged lst

supralabial (Fig. 4C–D), c) enlarged plate-like scales on the mid-dorsum and nape

(Fig. 5 A–D), d) clearly defined transverse rows of enlarged scales across the

original tail, and e) original tail with a pointed, attenuated tip (Fig. 6A–F). Using

these characters we were readily able to assign specimens to most of the lineages

identified by the molecular analyses, and determine the identity of museum

specimens for which molecular data were unavaliable. The exception to this

general pattern was the three eastern lineages (F, G, H), which could be readily

diagnosed from all other lineages in lacking a distinctively enlarged first

supralabial scale and in having no (or a poorly developed) canthal stripe, but aside

Figure 6. Scalation and shape of original tails. (A) D. conspicillatus (SAMA R32133) tail spade-like and
lacking attenuated tip; dorsal scale arrangement transverse, includes rows of both large and small scales. (B)
D. laevis (SAMA R56481) tail ends in distinct attenuated tip; dorsal scale arrangement transverse, includes
rows of both large and small scales (photographs – Jeff Wright, QM). (C) D. hillii (NTM R24364) tip spade-like;
dorsal scales relatively large and not arranged in clear transverse rows. (D) D. barraganae (NTM R21395) tip
spade-like; dorsal scales arranged in transverse rows which may include rows of both large and small scales.
(E) Diplodactylus bilybara (SAMR22819) short to moderate, acute attenuated extension at tip; alternating
transverse rows of large and smaller dorsal scales (F) D. custos (WAMR164780) tip moderately attenuated;
dorsal scales arranged in transverse rows of relatively uniform size (Images: Jeff Wright, QM).

doi:10.1371/journal.pone.0111895.g006
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from evidence of size differentiation did not show such consistent diagnostic

morphological features from each other.

Discussion

Species diversity

Delimiting species boundaries involves integration of independent data sources to

identify distinct evolutionary lineages [46], ideally including information from

mulitple nDNA loci, morphology, geography, ecology and reproduction [47]. The

limitations of using mtDNA alone to infer species boundaries and historical

phylogeography are widely recognised [48]. However, six of the nine major

mitochondrial lineages we identified (D. conspicillatus sensu stricto and lineages A–

E) are deeply divergent from each other and in addition can be readily diagnosed

by a suite of morphological characters (distinctive features of scalation on the

dorsum and original tails). Thus two lines of evidence support the hypothesis that

these represent evolutionarly distinct and diagnosable lineages (species). Three

further mitochondrial lineages identified previously (F–H) [30] form a strongly

supported clade that can be readily diagnosed from all other members of this

complex by their distinctive labial scalation, but are more difficult to diagnose

from each other, and are represented by few samples in our analyses. Diplodactylus

conspicillatus sensu stricto also includes two moderately divergent sublineages

(Fig. 2) that were flagged but not named by Oliver et al. [30]. Genetic divergences

between these sublineages are lower than between the recognised candidate taxa,

sampling for one is again sparse, and we did not find diagnostic morphological

characters. More detailed sampling and additional nDNA data sources are

required to resolve the taxonomic status of these remaining mitochondrial

lineages; and for the time being we note their potential significance, but do not

recognise any as distinct species.

Formal diagnoses and descriptions of the seven species we recognise within the

D. conspicillatus complex are provided in the systematics section at the end of this

paper, however for the remainder of this discussion we consider each of these

seven species as separate entities and use our revised binomial arrangement (see

Figs 1–3 for a summary of phylogenetic and distributional information).

Geographic structuring and bioregions

This study has confirmed that species diversity within the D. conspicillatus

complex in both the AAZ and AMT is much higher than previously recognised.

While significant sampling gaps remain (especially in northern Australia), based

on combined genetic datasets and morphological assessments, we were able to

infer the broad geographic distributions of most taxa. Of the seven species, three

are endemic to the AMT, two are endemic to AAZ and two occur in both biomes.

Our systematic analysis of this previously undetected diversity therefore provides
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oppurtunities to contrast patterns of diversity within biomes, and examine the

potential timing and nature of transitions between them.

The distributions of the species endemic to the AMT broadly correspond to

seperate regions of endemism; specifically the Kimberley, Top End and Gulf

[16, 17, 49], and are separated by putative biogeographic barriers [49, 50] (Fig. 3).

Diplodactylus custos sp. nov. is endemic to the Kimberley region. The moderate

genetic diversity of this species contrasts with very high genetic diversity of some

saxicoline gecko lineages endemic to the same region [6, 16, 23] but is similar to

Kimberley endemic toadlet lineages more strongly associated with savanna

woodlands [49]. Based on current sampling, the eastern extent of the range of D.

custos sp. nov. appears to broadly correspond with the putative Victoria River

drainage barrier [50, 51]. Genetic sampling for the remaining two AMT endemics

was threadbare. However, based on diagnostic morphological data, D. hillii is only

known from the western Top End (east of the Arnhemland Escarpment). A

disjunction in this region (the Mid-Territory Break) has been detected in Uperolia

toadlets [49] and may be related to variations in geology and topography around

the Arnhem Escarpment. The distribution of D. barraganae sp. nov. along the

Gulf of Carpentaria also mirrors that of a number of other lizard and frog clades

[16, 49]. Another putative biogeographic barrier, the Carpenteria Gap [17, 49, 52],

separates D. barraganae sp. nov. from the eastern-most species D. platyurus. In

this region the clay plains in the hinterland of the Gulf of Carpentaria may form

an important divide between the open woodlands of the Top End and Cape York

Peninsula [17].

Diplodactylus platyurus has a distribution centred on Queensland, ranging from

subhumid areas in the east and north and extending into the periphery of the AAZ

in the west. This species contains two deeply divergent lineages from the AMT

(Fig. 2, lineages G and H), while samples from a wide region along the eastern

periphery of AAZ (lineage F) cluster together in a third lineage. The distribution

of lineage F corresponds with the periodically flooded Channel country in western

Queensland, a region that provides a set of microhabitats that are not typical of

the AAZ, and is home to a suite of taxa that are absent from less watered areas to

the west [16, 53, 54].

Diplodactylus conspicillatus also occurs in the AMT and AAZ, although the vast

majority of its range is in the latter biome. This species includes divergent

sublineages distributed to the north and west of the Lake Eyre Basin, respectively,

and does not show a strong signal of range expansion (although sampling for the

north lineage was sparse). These data suggest that this clade has persisted and

diversified within or close to the edge of the AAZ since the late Miocene. The

potential roles of the vast lower Lake Eyre Basin and highly mobile sand dunes of

the Simpson Desert in shaping phylogeographic patterns within this region

warrant further investigation [55, 56]. The distribution of these two major

sublineages also broadly corresponds with the transition from the slightly higher

and more reliable summer rainfall deserts in the north, to the drier and more

winter rainfall deserts to the south [57, 58]; these gradients of seasonality and
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precipitation may provide climatic axes over which taxa could diversify within the

AAZ.

Only two species (Diplodactylus bilybara sp. nov. and D. laevis) have

distributions entirely confined to the AAZ, and both show a strong signal of

population expansion and relatively shallow intraspecific genetic diversity over

most of their ranges. Low genetic diversity has been detected in a number of

widespread arid zone taxa, and is thought to reflect relatively recent and major

demographic shifts through severe glacial cycles of the Plio-Pleistocene

[7, 9, 14, 18, 59]. The distribution of the two AAZ endemic taxa in this gecko

complex is also outwardly contrasting; Diplodactylus bilybara sp. nov. is restricted

to the southern and coastal west Pilbara and Carnarvon regions, while

Diplodactylus laevis has a vast distribution across central Australia. However,

mitochondrial diversity within the latter species is concentrated along the the

westernmost portion of its range, close to the range of the former [24]. This

distribution of phylogenetic diversity supports previous work suggesting that the

Pilbara and nearby areas have been an important zone of persistence and

diversification at the western periphery of the arid zone [6, 7, 15].

Contrasting diversification in the AMT and AAZ

The overall timeframe and pattern of divergences in the D. conspicillatus complex

implies that intensifying aridity since the late Miocene has played a central but at

times contrasting role in shaping diversification in the AMT and AAZ [9].

Lineages in older and shrinking mesic zones (such as the AMT) are restricted to

relatively small and largely allopatric patches of habitat, a distribution indicative

of long-term persistence, but with increasing attenuation and potentially non-

adaptive diversfication [6, 8, 9]. In contrast, the vast sandy plains of the central

AAZ appear to have a more dynamic recent history of ecological adaptation,

colonisations and large scale range shifts, but less in the way of intra-regional

diversification and speciation [9, 14].

Bayesian reconstruction of biome shifts within the D. conspicillatus complex

suggests that mesic biomes are ancestral. While support for many ancestral state

reconstructions in the tree is low, this overall pattern is consistent with the widely

held idea that the Australian arid biota is largely derived from peripheral and

more mesic biomes [9, 14, 60]. Furthermore, as intimated above, our simple

binary classification of arid vs not arid is also probably overly simplistic; while

peripheral regions such as the Pilbara (D. bilybara sp. nov.) and much of the

Channel country (D. platyurus lineage F) are technically within the AAZ,

compelling arguments can be made as to why they could be viewed as mesic

refugia [24, 53, 61]. Under this interpretation only two widespread species (D.

conspicillatus and D. laevis) would be considered successful colonists of the AAZ,

and the diversity in this zone would be rendered more clearly depaurate, recent

and derived than that of the AMT.

Our phylogeny also strongly indicates there have been repeated, independent

transitions between the AMT and the AAZ; detectable at both interspecific (D.
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barraganae sp. nov. and D. conspicillatus) and intraspecific levels (D. conspicillatus

and D. platyurus). In an analysis of the plant biota of the Southern Hemisphere

(including Australia), Crisp et al. [60] found that transitions between biomes were

relatively rare in general, and transitions into arid biomes from monsoonal

(savanna) environments were particularly rare. However, at least in Australia, the

AMT remains the least studied of the major biomes [17, 62] and this pattern may

to some extent have reflected a lack of data. Even in this study, our sampling from

the AMT is also sparse, and additional material will likely refine understanding.

However, this and other broadscale analyses increasingly suggest that the history

and evolution of many lineages in the the AMT and AAZ has been intimately

linked since at least the late Miocene [14, 16].

A final notable pattern is that the two most widespread arid zone taxa (D.

conspicillatus and D. laevis) have broadly overlapping distributions in the southern

and eastern arid zone (Figs 1 & 3); the only instance of widespread sympatry

within the D. conspicillatus complex. Relatively closely related congeners with

overlapping distributions in the AAZ have been found in other widely distributed

Australian lizard radiations [12, 21, 63] - sympatric diversity in these closely

related lizard taxa may be further evidence of a relatively dynamic recent history

of range expansion and ecological diversification in the vast but young arid biome

[9].

Hyper-diverse species complexes and evolutionary biology

Nearly 100 new and widely accepted Australian squamate species have been

described since 2000; indeed 2007 was the most ‘productive’ year on record for

Australian reptile taxonomy (30 well-characterised species) [64]. While some of

this new biodiversity represents singletons or other novelties uncovered by

fieldwork, many ‘new’ species have been detected within morphologically cohesive

nominal ‘species’ that actually comprise a larger number of unrecognised taxa

(five or more). In the Australian context such complexes are particularly well

documented in geckos [7, 8, 14, 16, 25, 61, 65, 66], but have also been detected in

blindsnakes [67], skinks [68–70, Donnellan pers com], and dragons [27]. While in

some cases these complexes appear to comprise genuinely morphologically cryptic

taxa, in others (such as the D. conspicillatus group) careful work oftens reveals a

suite of diagnositic morphological characters.

There is little sign that the rate of discovery is slowing down, and if anything, it

may increase in the short-term as sampling across northern Australia becomes

more comprehensive, and researchers assemble increasingly large genomic

datasets and develop new analytical methods [23, 71]. Even our assessment of the

D. conspicillatus group is likely to be an underestimate; there is further deep

genetic diversity in D. conspicillatus and D. platyurus, many areas remain poorly

sampled, and there are two morphologically distinct specimens from Cape York in

north-Queensland for which no genetic data is available (see below). Thus, as with

so many Australian lizard groups, further analyses will likely show that species

diversity still remains underestimated.
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Figure 7. Species of the D. conspicillatus complex in life. (A) Diplodactylus conspicillatus from 10 km
north of Barkley Hwy on Ranken to Alexander Station Road, north-eastern Northern Territory (Image: Ross
Sadlier); (B) Diplodactylus conspicillatus Alice Springs, Northern Territory (Image: Eric Vanderduys); (C) D.
hillii, Dorat Road, Northern Territory (Image: Paul Horner); (D) Diplodactylus laevis in life from Morgan Range,
Western Australia (Image: Mark Hutchinson); (E) Diplodactylus platyurus, Brooklyn Station, north Queensland
(Image: Eric Vanderduys); (F) Diplodactylus platyurus Myendetta Stn, Charleville, Queensland (Image: Steve
Wilson); (G) Diplodactylus bilybara sp. nov. Onslow, Western Australia (Image: Ryan Ellis); (H) Diplodactylus
custos sp. nov. Gibb River Road turnoff via Wyndham, Western Australia (Image: Steve Wilson). There are
currently no images available of D. barraganae sp. nov. in life.

doi:10.1371/journal.pone.0111895.g007

Figure 8. Lectotype of D. conspicillatus (NMV D7535). Charlotte Waters, Northern Territory. (Image – Katie
Smith, NMV).

doi:10.1371/journal.pone.0111895.g008
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Many arguments for the importance of continued efforts to properly

understand this biodiversity for conservation and management purposes have

been outlined in a compelling fashion elsewhere [22, 72]. However we would like

to conclude by further re-emphasising that systematic work on these complexes

also has a tendency to reveal interesting macro-evolutionary patterns. For

example, using the complexes of Australian lizards listed earlier in this section as

examples; systematic work has revealed parthenogenesis [56], ancient vicarience

and long-term persistence [8, 61], rapid radiation [70], morphological con-

servatism or parallelism [27, 67, 68] and provided insight into the comparative

history of biomes or regions of endemism ([14, 24], this study). Further work to

resolve other species complexes will continue to provide a framework for broader

insights into macroevolutionary processes.

Systematics

Nomenclatural Synopsis

Diplodactylus conspicillatus was described from specimens collected by Mr P. M.

Byrne at Charlotte Waters in the southern Northern Territory (NT). In

subsequent taxonomic work three additional, closely allied taxa have been named:

Diplodactylus hillii Longman [73] from Port Darwin, N.T.; Gymnodactylus laevis

Sternfeld [74] from Hermannsburg Mission, N.T. and Diplodactylus platyurus

Parker [75] from Torrens Creek, Queensland (QLD).

Diplodactylus hillii (as D. hilli) was placed in the synonymy of D. conspicillatus

by Kluge [76]. In this work Kluge only examined type material held in Australian

museums and no consideration was given to the taxonomic status of G. laevis or

D. platyurus. However, when Kluge revisited D. conspicillatus for his revision of

the genus [77], both G. laevis and D. platyurus were also listed with D. hillii in the

synonymy of D. conspicillatus (although the G. laevis type material is not listed

amongst the specimens examined). Two of these synonyms (D. hillii and D.

platyurus) were resurrected from the synonymy of D. conspicillatus by Wells and

Wellington [78] but, as no justification was given, this action was widely ignored.

Kluge’s D. conspicillatus synonymy was followed by Cogger [29] who examined

the type specimens of all the listed synonyms.

Based on a combination of morphology and genetics the available names can

readily be assigned to the various taxa under consideration here. Key diagnostic

characters are discussed in detail in the species accounts.

Species group diagnosis

Our concept of the D. conspicillatus group includes only species that are part of a

strongly supported clade of related forms that have previously been synonymised

or confounded with the nominate species. This is contra Kluge [77] and Storr

et al. [79], who included the nominate species and some or all of D. kenneallyi, D.

pulcher and D. savagei; the phylogenetic relationships of which, based on available
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data, remain unclear. However, they do not show any evidence of a strong or close

affinity to the D. conspicillatus group [25].

All species in the Diplodactylus conspicillatus group can be distinguished from

their congeners by the following combination of characters: all or most

supralabials small and granular, at most only one enlarged anterior (1st)

supralabial; terminal lamellae on fingers at most only slightly wider than digit;

other prominent enlarged subdigital lamallae absent; tail short, as wide or wider

than body, depressed with heterogenous scalation, usually bearing large plate-like

scales and/or conical tubercules arranged in transverse rows; and dorsal

colouration extremely variable, but never consisting of large clearly defined bands

or blotches. Comparisons in the following species accounts are restricted to taxa

in the D. conspicillatus species group only.

The order of authorships for the three new species herein do not follow that of

the paper as a whole.

Diplodactylus conspicillatus Lucas & Frost 1897

Variable Fat-tailed gecko

Figs 4A, 4C, 5A, 5C, 6A, 7A & B, 8

Material Examined

NMV D7535, Charlotte Waters (25˚ 559 S, 134˚ 559 E) NT, lectotype; NTM

R24076 – 77, Arafura Swamp, Arnhem Land (12˚ 329 420 S, 134˚ 549 240 E) NT;

SAMA R38819, 1 km E of Three Ways (19˚ 269 S, 134˚ 139 E) NT; NTM R9525,

Frenena (19˚ 269 S, 135˚ 249 E) NT; QM J92288, S of Mt Isa (21˚ 089 430 S, 139˚
159 410 E) QLD; NTM R22130, Toko Ra., Tobermorey Stn (22˚ 449 S, 137˚ 569 E)

NT; WAM R110767, Jimblebar East (23˚ 239 460 S, 120˚ 189 360 E) WA; WAM

R110770, Jimblebar East (23˚269 260 S, 120˚209 E) WA; WAM R166300, 16.8 km

ENE Blackstone (25˚569 070 S, 128˚ 269 160 E) WA; SAMA R50114, 2.3 km WSW

of Sentinel Hill (26˚059 170 S, 132˚259 410 E) SA; SAMA R52781, 11.7 km SSW of

Mount Sarah homestead (27˚ 019 320 S, 135˚ 139 160 E) SA; SAMA R44870, 6 km

WSW of Womikata Bore homeland (26˚ 069 330 S, 132˚ 059 570 E) SA; SAMA

R46981, 5.6 km SSE Mosquito Camp Dam, New Crown Stn (26˚ 099 280 S, 134˚
309 490 E) SA; SAMA R51587, 36.9 km ESE of Amata (26˚ 169 580 S, 131˚ 299 120

E) SA; SAMA R44864, 8 km NE of Mt Woodroffe (26˚ 179 100 S, 131˚ 489 200 E)

SA; SAMA R38849, 6 km W Namatjira/Larapinta Drive junction, Namatjira drive

(26˚469 S, 133˚279 E) NT; SAMA R51514, 3.3 km SW of Indulkana (26˚599 180 S,

133˚ 169 580 E) SA; SAMA R41859, 5 km S of Blue Hills Bore (27˚ 109 390 S, 132˚
529 060 E) SA; AMS R125042, Cunnamulla (28˚ 049 S, 145˚ 419 E) QLD; SAMA

R42569, SAMA R42574, 169 km NE of Emu, GI 51 (28˚ 149 S, 133˚ 209 E) SA;

SAMA R42589, 20 km W (road) of base camp 2 (28˚ 159 S, 133˚ 089 E) SA; WAM

R85850, 39 km E Laverton (28˚ 289 S, 122˚ 509 E) WA; AMS R58090, 35.9 km

WSW of Ely Hill (28˚ 289 510 S, 134˚ 039 410 E) SA; SAMA 26581, 25 km SSW

Mabel Ck homestead (29˚ 109 S, 134˚ 159 300 E) SA; SAMA 26227, 30 km SW

Mabel Ck homestead (29˚ 109 300 S, 134˚ 089 E) SA; SAMA R59454, 62.6 km NW
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Maralinga (29˚ 469 140 S, 131˚ 069 290 E) SA; SAMA R61024, 218.2 km WNW

Tarcoola (29˚ 509 420 S, 132˚ 319 590 E) SA; SAMR59401, 12.6 km WNW

Maralinga (30˚ 059 520 S, 131˚ 289 060 E) SA; SAMA R32133, 10 km SSW

Maralinga (30˚ 159 010 S, 131˚ 329 450 E) SA; SAMA R20884, Olympic Dam area

Roxby Downs (30˚ 239 S, 136˚ 539 E) SA; SAMA R45246, Salt Ck crossing, E of

Lake Gairdner (31˚ 339 200 S, 136˚ 219 450 E) SA.

Diagnosis

A large member of the D. conspicillatus group (max SVL 62 mm) with a bold

canthal stripe and a greatly enlarged first supralabial (contacting ventral edge of

nasal scale. Mid-dorsal scales on trunk plate-like and markedly larger than smaller

dorsolateral scales. Scales on nape granular and only slightly larger than granules

on side of neck. Original tail spade-like and lacking an acute attenuated extension

at tip. Scales on dorsal surface of tail arranged in transverse rows (which usually

include rows of both large and small scales). Pattern generally spotted and often

with numerous dark blotches that contrast strongly with base colour (Fig. 7A–B).

Description

SVL mm 47.05–62.71 (n532, mean 554.40, SD54.04). Proportions as % SVL:

AG 45.72–57.43 (n532, mean 550.36, SD50.03); T 32.30–44.27 (n528, mean

539.63, SD50.03); HL 16.38–19.90 (n531, mean 518.53, SD50.01). Head:

moderate and not strongly differentiated from neck; snout longer than diameter

of eye. HW 68.5–91.6% HL (n532, mean 580.93, SD50.05); HD 43.6–55.5% HL

(n532, mean 550.2, SD50.04); S 42.8–52. 0% HL (n532, mean 546.63,

SD50.02); EE 25.4–31.5% HL (n532, mean 528.6, SD50.02). Covered in small

granular scales; rostral shield large and lacking a medial groove, hexagonal with

5–7 scales in contact with its posterior margin (n532, mean 55.19, mode 55,

SD50.48); mental shield hemispherical but sometimes with a slight process

extending medially from its posterior margin, 9–13 scales contacting posterior

edge (n532, mean 511.16, mode 512, SD51.04); supralabials 12–20 (n532,

mean 515.63, mode 515, SD52.16) with the first enlarged and contacting ventral

edge of nasal scale (Fig. 4C), the remaining series are small and not differentiated

from the adjacent loreal scales; infralabials 10–19 (n532, mean 514.91, mode

515, SD52.32), all small and undifferentiated from adjacent chin scales; eye large,

pupil vertical with crenulated margin; ear small and usually horizontally elliptic.

Neck: broad with small granular scales on dorsal surface that are only slightly

larger than the adjacent scales on the lateral surfaces (Fig. 5A). Trunk: moderate

and somewhat stout; scales generally granular but a broad zone of larger, plate-like

scales is present along the back and these contrast in size with the smaller granules

on the flanks (Fig. 5C); granules small on ventral surface but increase in size on

pectoral region; preanal pores absent; a small cluster of postanal tubercles present

in both sexes but larger and more prominent in males Limbs: moderate; forelimb

27.67–34% SVL (n532, mean 530.74, SD50.02), hindlimb 28.67–37.28% SVL

(n532, mean 533.50, SD50.02); digits short and squat, lacking any distal

expansion; subdigital lamellae granular (not a clearly defined series except for
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small distal pair), 10–13 beneath fourth finger (n532, mean 511.13, mode 511,

SD50.93), 11–16 beneath fourth toe (n532, mean 512.72, mode 512,

SD51.22). Original tail: short, wide 39.7–56.4% tail length (n528, mean 546.7,

SD50.04), spade-like and bluntly pointed (lacking acute attenuated tip: Fig. 6A);

scales large and plate-like, arranged in clear transverse pattern that usually

incorporates rows of both large and small scales (Fig. 6A); larger scales with a

short bluntly to sharply-tipped medial tubercle; 28–39 (n528, mean 532.71,

mode 535, SD52.49) medial scale rows on tail from fracture plane (1st autotomy

septum) to tip; 12–15 (n528, mean 512.68, mode 512, SD50.92) rows of scales

across original tail (large row closest to maximum width); ventral scales

considerably smaller than dorsal scales. Regrown tail: with rounded distal end and

more uniform scalation that is not arranged in clear transverse rows.

Pattern (in spirit)

Variable. Most specimens tan to mid-brown and heavily chequered with small

dark blotches that may coalesce to produce a reticulated appearance (lighter

individuals more uniform; mid-brown, finely peppered with darker markings and

bearing pale spots on dorsal and lateral surfaces). Pale spots generally present,

most prominent on flanks. In some specimens there is reduced pigmentation on

the vertebral zone producing as a ragged-edged vertebral stripe (one specimen,

WAM R110770, has a well-defined dark vertebral stripe bordered on either side by

a pale paravertebral stripe). Head generally with darker crown but paler towards

periphery. A prominent, pale canthal stripe present, extending from anterior edge

of orbit to tip of snout and producing a distinctive ‘v’ shaped marking which

contrasts with the darker dorsal and lateral head markings. A broad dark zone on

side of face extends posteriorly beyond eye to temporal region. A pale zone below

eye extends to ear. Limbs mottled or spotted and inner digits of forelimb with

reduced pigmentation. Ventral surfaces off-white, immaculate.

Figure 9. Holotype of D. hillii (QMJ 1994). Port Darwin, Northern Territory (Image – Jeff Wright, QM).

doi:10.1371/journal.pone.0111895.g009
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Comparisons

Diplodactylus conspicillatus is readily distinguished from D. platyurus in possessing

an enlarged first supralabial that contacts the ventral edge of the nasal scale (vs 1st

supralabial small and not differentiated from the rest of the supralabial row). It is

distinguished from D. barraganae sp. nov. and D. hillii in having enlarged, plate-

like mid-dorsal scales that are conspicuously larger than the dorsolateral scales (vs

mid-dorsals small and granular, only slightly larger than dorsolateral scales). It is

separated from the remaining three species in this complex (D. laevis, D. bilybara

sp. nov. and D. custos sp. nov. by the shape of its original tail which is spade-like

and lacks an acute attenuated tip (vs original tail bearing a short attenuated tip).

Distribution and Ecology

Very widely distributed throughout much of the arid zone; extending west to the

eastern edge of the Pilbara and Western Australian Goldfields, east to Cunnamulla

in south central Queensland, and south to the northern edge of the Nullarbor

Plain in South Australia (Fig. 3). There are also scattered records from the

Australian Monsoonal tropics in the Northern Territory, including two specimens

from a high rainfall zone in north-eastern Arnhemland. Throughout this broad

region this species inhabits a very wide range of habitats ranging from sparsely

vegetated Gibber plains to open woodlands, but is generally associated with harder

stony, clay and compacted sandy substrates.

Comments

Examination of the lectotype (NMV D7535: Fig. 8) shows it to be a poorly

preserved specimen that looks to be slightly dessicated, is lacking a tail but has a

rusted pin protuding from the tail base. Despite its poor condition, it clearly

exhibits large plate-like scales on the vertebral region of its back accompanied by

small, granular scales on the nape. The only other morphotype that occurs in the

vicinity of the Northern Territory/South Australian border (Diplodactylus laevis)

has large plate-like scales on both the vertebral region and the nape and is clearly

not conspecific with NMV D7535.

The wide range of this species and observed deep phylogenetic structure

suggests additional taxonomic investigations are necessary.

Diplodactylus hillii Longman 1915

D. conspicillatus (in part; Kluge 1963)

D. conspicillatus (in part; Cogger, H.G. in Cogger et al., 1983)

‘conspicillatus’ D (Oliver et al. 2009)

Northern Fat-tailed gecko

Figs 5D, 6C, 7C, 9

Material Examined

QM J1994, Port Darwin (13˚ 219 S, 130˚ 429 E) NT, holotype; NTM R17871,

Arnhem Hwy, 5 km E Corroboree Taven (12˚459 S, 131˚299 E) NT; NTM R9933,

Reynolds River, Litchfield NP (13˚ 169 S, 130˚ 419 E) NT; NTM R17894, Kakadu
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NP, headwaters of Katherine River (13˚ 169 120 S, 133˚ 009 360 E) NT; NTM

R20552, Stuart Hwy, Near Robin Falls (13˚ 219 S, 131˚ 089 E) NT; NTM R27363,

Dorat Rd, Daly River Region (13˚ 309 S, 131˚ 179 E) NT; NTM R25027, Douglas

Stn, Daly River Region (13˚ 319 130 S, 131˚ 169 099 E) NT; NTM R11690,

Katherine Gorge NP (14˚ 189 480 S, 132˚ 329 540 E) NT; NTM R0802, Katherine,

10 Miles N (14˚ 229 S, 132˚ 199 E) NT; NTM R0152–53, Katherine, 2 miles N (14˚
279 S, 132˚ 169 E) NT; NTM R3772–73, Manbuloo Stn (14˚ 319 S, 132˚ 129 E) NT;

NTM R6300, Katherine, 40 Km South (14˚ 399 S, 132˚ 269 E) NT; NTM R4514, S

of Katherine, Stuart Hwy (14˚ 409 S, 132˚ 409 E) NT; NTM R0364–65, 5 miles N

Katherine (14˚ 449 S, 132˚ 049 E) NT; NTM R24364, King River, Katherine (14˚
469 290 S, 132˚ 159 100 E) NT; NTM R23310, Elsey NP (14˚ 549 540 S, 133˚ 139 450

E) NT.

Diagnosis

A moderate-sized member of the D. conspicillatus group (max SVL 52 mm) with a

bold canthal stripe and greatly enlarged first supralabial (contacting ventral edge

of nasal scale). Mid-dorsal scales on trunk small and only slightly larger than

dorsolateral scales. Original tail spade-like and lacking an acute attenuated

extension at tip. Scales on dorsal surface of original tail all large and not arranged

in clearly defined transverse rows (pine cone-like appearance).

Description

SVL mm 25.09–52.34 (n519, mean 546.31, SD55.52). Proportions as % SVL:

AG 43.87–56.20 (n519, mean 548.50, SD50.03); T 30.59–39.32 (n519, mean

534.42, SD50.03); HL 17.44–24.19 (n519, mean 519.93, SD50.01). Head:

moderate and not strongly differentiated from neck; snout longer than diameter

of eye. HW 64.19–85.17% HL (n518, mean 574.47, SD50.05); HD 43.8–54.4%

HL (n519, mean 547.9, SD50.03); S 44.62–50.47% HL (n519, mean 547.0,

SD50.01); EE 21.79–30.39% HL (n519, mean 525.93, SD50.02); covered in

small granular scales; rostral shield large and lacking a medial groove, hexagonal

with 5 scales in contact with its posterior margin (n519); mental shield

hemispherical, usually with a moderate process extending medially from its

posterior margin, 8–12 scales contacting posterior edge (n519, mean 510.11,

mode 511, SD51.10); supralabial scales 14–24 (n518, mean 518.39, mode 520,

SD52.20) with the first enlarged and contacting ventral edge of nasal scale, the

remaining series are small and not differentiated from the adjacent loreal scales;

infralabial scales 13–21 (n516, mean 517.38, mode 519, SD52.50), all small and

undifferentiated from adjacent chin scales; eye large, pupil vertical with crenulated

margin; ear small, round to horizontally elliptic. Neck: broad with small granular

scales on dorsal surface that are only slightly larger than the adjacent scales on the

lateral surfaces. Trunk: moderate and somewhat stout; mid-dorsal scales only

slightly larger than dorolateral scales (Fig. 5D); granules small on ventral surface

but increase in size on pectoral region; preanal pores absent; a small cluster of

postanal tubercles present in both sexes but larger and more prominent in males.

Limbs: moderate; forelimb 29.19–36.03% SVL (n519, mean 531.67, SD50.02);
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hindlimb 30.36–37.94% SVL (n518, mean 534, SD50.02); digits moderate with

no or only slight distal expansion; subdigital lamellae granular (not a clearly

defined series except for small distal pair); 10–14 lamellae beneath fourth finger

(n519, mean 511.79, mode 511, SD50.98); 12–15 lamellae beneath fourth toe

(n519, mean 513.11, mode 513, SD50.94) Original tail: short, wide 40.35–

72.49% tail length (n518, mean 554.62, SD50.07); spade-like and bluntly

pointed (lacking an acute attenuated tip; Fig. 6C); scales large and plate-like, not

arranged in clearly defined transverse bands (scales more or less of uniform size;

Fig. 6C) with short blunt to sharp medial tubercle; 23–30 (n519, mean 525.58,

mode 525, SD52.27) medial scale rows on tail from fracture plane (1st autotomy

septum) to tip; 10–15 (n518, mean 511.83, mode 512, SD51.50) rows of scales

across original tail (large row at maximum width); ventral scales considerably

smaller than dorsal scales. Regrown tail: not assessed but likely to be as for other

species.

Measurements and scale counts of holotype

QM J 1994 (male, Fig. 9). SVL547.42 mm, AG522.88 mm, L1513.84 mm,

L2515.46 mm, HL59.28 mm, HD54.63 mm, HW56.97 mm, S54.42 mm,

EE52.43 mm, TL514.52 mm, TW59.35 mm, scales contacting posterior edge of

rostral 55, scales contacting posterior edge of mental 59, lamellae beneath 4th

finger 512, lamellae beneath 4th toe 514, medial scale rows on tail from fracture

plane (1st autotomy septum) to tip 529, rows of scales across original tail 14,

supralabials 518, infralabials 519.

Pattern (in spirit)

Variable. Most specimens tan to mid-brown and heavily marked with dark,

irregular bands that form a broad reticulum on upper lateral/paravertebral zone

and may extend to lower flanks. Vertebral zone with a ragged dark edge; generally

free of pattern but sometimes the dark flank pattern may bridge this zone or the

vertebral line may carry a row of small dark blotches (some individuals with a

finer, lighter reticulum over entire dorsal surface which is marked with numerous

small pale spots). Head with a pale crown that is continuous with the vertebral

Figure 10. Lectotype of Gymnodactylus laevis (SMF8242). Hermannsburg Mission, Northern Territory.
(Image: Dr Hal Cogger). This specimen was removed from the gut of a Varanus gouldii and is partially
digested and in poor condition.

doi:10.1371/journal.pone.0111895.g010
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zone. A pale canthal stripe present, extending from anterior edge of orbit to tip of

snout and producing a distinctive ‘v’ shaped marking which has dark edging. A

poorly defined pale zone below eye extends to the ear. Limbs finely spotted. Inner

digits with reduced pigmentation. Original tail with little pattern or with darker

bars similar to those on flanks. Ventral surfaces off-white, immaculate.

Comparisons

Diplodactylus hillii is readily distinguished from D. platyurus in possessing an

enlarged first supralabial that contacts the ventral edge of the nasal scale (vs 1st

supralabial small and not differentiated from the rest of the supralabial row). It is

distinguished from D. conspicillatus, D. laevis, D. bilybara sp. nov. and D. custos

sp. nov. in having small mid-dorsal scales that are only slightly larger than the

dorsolateral scales (vs mid-dorsal scales conspicuously larger than the smaller

dorsolateral scales). It is further separated from D. laevis, D. bilybara sp. nov. and

D. custos sp. nov. in lacking an acute attenuated tip to the original tail (vs

attenuated tip present). Diplodactylus hillii most resembles D. barraganae sp. nov.

with which it shares small mid-dorsal scales and a blunt, spade-like original tail.

These two species differ most in the configuration of the scales on the original tail

(enlarged scales not in clearly defined transverse rows and mostly subequal for D.

hillii vs clearly defined trows of both large and small scales for D. barraganae sp.

nov.).

Distribution and Ecology

Found in eastern and central ‘‘Top End’’, from close to Darwin south as far as

Elsey National Park (Fig. 3). Its habitat preferences within this area have not been

determined.

Comments

The holotype of D. hillii, (QMJ 1994; Fig. 9), was examined and exhibits a unique

scale configuration found only in D. conspicillatus sensu lato populations from the

N.T. occurring above 15˚S (i.e. scales on dorsal surface of original tail all large and

not arranged in clearly defined transverse rows).

Diplodactylus laevis (Sternfield, 1924)

Gymnodactylus laevis Sternfield, 1924

D. conspicillatus (in part; Kluge 1967)

D. conspicillatus (in part; Cogger, H.G. in Cogger et al., 1983)

‘conspicillatus’ C (Oliver et al. 2009)

Desert Fat-tailed gecko

Figs 5B, 6B, 7D, 10

Material Examined

SMF8242, Hermannsburg Mission NT, lectotype; WAM R168509, Coulomb

Point (17˚ 279 440 S, 122˚ 099 090 E) WA; NTM R32478–79, Tanami (19˚ 549 S,

130˚ 419 E) NT; NTM R32472, Lake Surprise (20˚ 0 69 S, 131˚ 009 280 E) NT;
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WAM R161640, 12.5 km NNE Goldsworthy (20˚ 149 310 S, 119˚ 349 280 E) WA;

NTM R15137, NTM R15157, NTM R15191–92, Sangster9s Bore, 12 km SW (20˚
529 S, 130˚ 169 E) NT; NTM R18018, Lake Mackay (22˚ 299 S, 129˚ 049 E) NT;

WAM R166303, 3.2 km N Pungkulpirri Waterhole (24˚ 379 430 S, 128˚ 459 200 E)

WA; SAMA R36126, SAMA R36129, SAMA R36149, SAMA R36151, Yulara town

site (25˚ 149 S, 131˚ 019 E) NT; SAMA R29928, 22 km along Mulga Pk Rd SSE

Curtin Springs homestead (25˚309 S, 131˚499 E) NT; SAMA R29936, 24 km along

Mulga Pk Rd SSE Curtin Springs homestead (25˚ 319 S, 131˚ 499 E) NT; SAMA

R49965, 46.6 km E of Purni Bore (26˚ 199 180 S, 136˚ 339 400 E) SA; SAMA

R63874, 100.9 km N Innamincka (26˚ 509 160 S, 140˚ 409 570 E) SA; SAMA

R63894, 76.5 km N Innamincka (27˚039 030 S, 140˚409 210 E) SA; SAMA R56481,

7.4 km ESE (106 degrees) Mount Hoare (27˚049 370 S, 129˚469 220 E) SA; SAMA

R56495 (27˚059 030 S, 129˚449 200 E) SA; SAMA R49077, SAMA R 49081, 1.7 km

NE of Candradecka Dam (27˚129 040 S, 140˚529 420 E) SA; WAM R172202, Great

Victoria Desert (28˚ 209 010 S, 127˚ 239 500 E) WA; SAMA R62236, 184 km SSW

Wartaru (28˚309 280 S, 129˚009 179 E) SA; SAMA R62383, 164.7 km SSE Wartaru

(28˚319 550 S, 129˚579 270 E) SA; SAMA R62397, 164.7 km SSE Wartaru (28˚329

010 S, 129˚ 549 430 E) SA; SAMA R62346, 166.7 km SSE Wartaru (28˚ 329 330 S,

130˚ 049 180 E) SA; SAMA R57170, 11.2 km E Vokes Hill Corner (28˚ 339 420 S,

130˚ 479 400 E) SA.

Diagnosis

A large member of the D. conspicillatus group (max SVL 65 mm) with a bold

canthal stripe and a greatly enlarged first supralabial (contacting ventral edge of

nasal scale). Mid-dorsal scales on trunk plate-like and markedly larger than

smaller dorsolateral scales. Scales on nape and top of head also plate-like and

whilst sometimes smaller than those on back, still considerably larger than the

small granules on side of neck. Original tail sharply-pointed and terminating with

an acute attenuated extension at tip. Scales on dorsal surface of tail arranged in

transverse rows (which include rows of both large and small scales). Pattern

generally reticulated.

Description

SVL mm 42.39–64.85 (n530, mean 554.89, SD 54.72). Proportions as % SVL:

AG 46–57.31 (n530, mean 551.82, SD50.03); T 36.73–52.26 (n526, mean

545.72, SD50.04); HL 15.31–19.45 (n530, mean 517.30, SD50.01). Head:

moderate and not strongly differentiated from neck; snout longer than diameter

of eye. HW 79.40–98.7% HL (n529, mean 590. 90, SD50.05); HD 47.8–64% HL

(n530, mean 554.0, SD50.04); S 42.68–49.7% HL (n530, mean 546,

SD50.02); EE 24.2–34.6% HL (n530, mean 529.64, SD50.03). Dorsal surface

covered with enlarged scales that are continuous with the enlarged, plate-like

dorsal scales on the trunk; rostral shield large and lacking a medial groove,

hexagonal with 5–6 scales in contact with its posterior margin (n530, mean

55.07, mode 55, SD50.25); mental shield hemispherical but sometimes with a

slight process extending medially from its posterior margin, 10–15 (n530, mean
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512.13, mode 511, SD51.50) scales contacting posterior edge; supralabial scales

14–20 (n530, mean 516.37, mode 515, SD51.45) with the first enlarged and

contacting ventral edge of nasal scale, the remaining series are small and not

differentiated from the adjacent loreal scales; Infralabial scales 11–20 (n530, mean

515.7, mode 517, SD52.18), all small and undifferentiated from adjacent chin

scales; eye large, pupil vertical with crenulated margin; ear small, round to

horizontally elliptic. Neck: broad with enlarged scales on dorsal surface which are

substantially larger than adjacent scales on the lateral surfaces (Fig. 5B). Trunk:

moderate and somewhat stout; scales generally granular but a broad zone of

larger, plate-like scales is present along mid-dorsum and these contrast in size

with the smaller dorsolateral scales; granules small on ventral surface but increase

in size on pectoral region; preanal pores absent; a small cluster of postanal

tubercles present in both sexes but larger and more prominent in males Limbs:

moderate; forelimb 25.08–33.9% SVL (n530, mean 529.52, SD50.02); hindlimb

27.82–39% SVL (n530, mean 532.17, SD50.03); digits short and squat, lacking

any distal expansion; subdigital lamellae granular (not a clearly defined series

except for small distal pair); 10–13 beneath fourth finger (n529, mean 511.52,

mode 511, SD50.95); 11–16 beneath fourth toe (n529, mean 513.59, mode

513, SD51.12); Original tail: short, wide 34.4–58.5% tail length (n526, mean

544.9, SD50.06), with an acute attenuated extension at tip (Fig. 6B); scales large

and plate-like, arranged in clear transverse pattern that usually incorporates rows

of both large and small scales (Fig. 6B); larger scales with short bluntly to sharply-

tipped medial tubercle; 37–50 (n528, mean 543.04, mode 542, SD52.49)

medial scale rows on tail from fracture plane (1st autotomy septum) to tip; 12–19

(n528, mean 514.18, mode 514, SD51.33) rows of scales across original tail

(large row at maximum width); ventral scales considerably smaller than dorsal

scales. Regrown tail: with rounded distal end and more uniform scalation that is

not arranged in clear transverse rows.

Pattern (in spirit)

Variable. Most specimens tan to mid-brown with a darker reticulated pattern of

fine to moderate wavy lines that extend over the entire dorsum. Many specimens

exhibit fine pale spotting that is most evident on the flanks. Head, as for body with

dark reticulations on crown. A pale canthal stripe present, extending from

anterior edge of orbit to tip of snout and producing a distinctive ‘v’ shaped

marking which has dark edging. A broad dark zone on side of face extends

posteriorly beyond eye to temporal region. A poorly to well-defined pale zone

below eye extends to the ear. Limbs weakly mottled or spotted and inner digits

with reduced pigmentation. Tail marked with small dark flecks. Ventral surfaces

off-white, immaculate.

Comparisons

Diplodactylus laevis is readily distinguished from D. platyurus in possessing an

enlarged first supralabial that contacts the ventral edge of the nasal scale (vs 1st

supralabial small and not differentiated from the rest of the supralabial row). It is
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distinguished from D. conspicillatus, D. laevis, D. bilybara sp. nov. and D. custos

sp. nov. in having enlarged, plate-like scales on the nape and top of head that are

appreciably larger than those on the sides of the neck (vs scales on nape granular

and not appreciably larger than those on sides of neck). It is most readily

distinguished from Diplodactylus hillii and D. barraganae sp. nov. by the shape of

its original tail which bears an acute attenuated extension at the tip (vs tail blunt,

spade-like without an attenuated tip) and further distinguished from these species

by its mid-dorsal scales (mid-dorsals enlarged and plate-like, conspicuously larger

than the dorsolateral scales in D. laevis vs mid-dorsal scales small, only slightly

larger than the dorsolaterals).

Distribution and Ecology

Widely distributed over much of the Australian arid zone, occurring from the

Dampier Peninsula, Pilbara and Great Victoria Desert in the west, through much

of north-western South Australia and the southern half of the Northern Territory,

with an apparently isolated eastern population in the Channel Country around

north-eastern South Australia (Fig. 3).

Comments

A black and white photographic image of the lectotype of Gymnodactylus laevis

(SMF8242; Fig. 10) was kindly provided by Dr Harold Cogger. The specimen is

damaged (partially digested) having been removed from the gut of a Varanus

gouldii specimen from Hermannsburg Mission, NT. Despite its poor condition, it

is possible to determine from the image that the specimen has an enlarged 1st

supralabial, enlarged scales on its mid-dorsum, nape and head, an acute

attenuated extension at the tip of its original tail and some indication of a

reticulated dorsal pattern. Cogger notes from his examination of the specimen

that ‘colour pattern is light brown or creamish with a series of irregular dark

brown spots and patches forming a vague reticulum’ (Cogger, unpublished data).

This suite of characters fit the specimens examined above, whose distribution

Figure 11. Holotype of D. platyurus (BMNH 1946.8.11.38). Torrens Ck, Queensland. (Image: Dr Hal
Cogger).

doi:10.1371/journal.pone.0111895.g011
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encompasses the central Australian region from which SMF8242 was collected. It

remains unclear why Mertens [80] chose a partially digested specimen as the

lectotype.

Diplodactylus platyurus Parker 1926

D. conspicillatus (in part; Kluge 1967)

D. conspicillatus (in part; Cogger, H.G. in Cogger et al., 1983)

‘conspicillatus’ F–H (Oliver et al. 2009)

Eastern Fat-tailed gecko

Figs 4B, 4D, 7E–F, 11

Material Examined

BMNH 1946.8.11.38, Torrens Ck (21 2̊59S, 145 1̊49E) QLD, holotype; QM

J71803, 15 km N Mt Carbine towards Laura (16˚ 309 S, 145˚ 039 E) QLD; QM

J91172, near Mt Carbine township (16˚ 319 510 S, 145˚ 069 180 E) QLD; QM

J69713, Fossilbrook, Burlington Stn (17˚ 489 300 S, 144˚ 239 300 E) QLD; QM

J58912, Normanton, 8.2 km W of, on Cloncurry Rd (17˚ 449 S, 141˚ 029 E) QLD;

QM J58919, Normanton, 16.0 km West of, on the Cloncurry Rd (17˚ 489 S, 141˚
019 E) QLD; QM J77374, Florey St, Wulguru, Townsville (19˚ 209 S, 146˚ 499 E)

QLD; QM J92286, Mingela Road near Townsville ,(19 5̊39S, 146 3̊89E) QLD;

SAMA R63337, Mingela (19˚ 529 120 S, 146˚ 379 480 E) QLD; QM J82303,

Blackbraes NP (19˚ 239 310 S, 144˚ 099 010 E) QLD; QM J80633, Blackbraes NP

(19˚ 239 570 S, 144˚ 099 030 E) QLD; QM J63337, Porcupine Gorge NP (20˚ 239 S,

144˚ 269E) QLD; QM J47527, Torrens Ck, 12 km NNE (20˚ 399 S, 145˚ 059E)

QLD; QM J54321, Hughenden, 9.6 km NE (20˚ 479 480 S, 144˚ 209 E) QLD; QM

J44369, Dalrymple town reserve 107, Freehold Portion (20˚ 579 S, 147˚ 059E)

QLD; QM J81437, Morrinya NP (21˚239 S, 144˚589 E) QLD; QM J81752, Lenton

Downs (21˚ 339 230 S, 148˚ 089 240 E) QLD; QM J68966, BHP S Walker Ck Coal

Mine, 40 km W Nebo (21˚449 360 S, 148˚249 500 E) QLD; QM J81306, 27.5 km N

Moranbah (21˚469 S, 148˚009 E) QLD; QM J69765, Moranbah, 5 km S (22˚029 S,

148˚ 039 E) QLD; SAMA R63336, Winton, (22˚ 279 S, 142˚ 579 E) QLD; QM

J92287, Winton (22˚ 289 429S, 142˚ 539 310E) QLD; QM J63083, Blair Athol Coal

Mine (22˚ 429 S, 147˚ 339 S) QLD; QM J78200, Junee SF9 (22˚ 489 240 S, 149˚
599569 E) QLD; QM J45804, Bluff, 1.8 km E (23˚ 359 S, 149˚ 069 E) QLD; QM

J83120, Blackwater, 21.3 km SW (23˚439 500 S, 148˚449 370 E) QLD; QM J47655,

Blackdown Tableland NP, The Gap (23˚ 489 S, 149˚ 089E) QLD; QM J90778,

Noonbah homestead, 3.4 km NNE (24˚ 049 510 S, 143˚ 119 540 E) QLD; AMS

R60250, 37 km N of Blackall on Landsborough QLD (24˚089 S, 145˚219 E) QLD;

QM J56888, Waterloo site 1 (24˚ 169 S, 143˚ 139 E) QLD; QM J89191, Tyrone,

approx 70 km NW of Charleville - 3 km S of old north Tyrone homestead(25˚589

550 S, 145˚449 170 E) QLD; QM J35697, Ambathala NRS, 1 km S Ra Tank (26˚019

300 S, 145˚ 049 300 E) QLD; QM J74874, Mariala Nature Ref. Site, No. 3 hut (26˚
049 480 S, 145˚ 069 E) QLD; QM J79909, Mariala (26˚ 059 300 S, 145˚ 049 150 E)

QLD; AMS R158426, Sturt NP, Silver City Hwy., Wittabrinna Ck. Crossing (29˚
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229 380 S, 142˚029 080 E) NSW; AMS R132996, Wanaaring, 4 km W of Wanaaring

at Turnoff To Wilcannia (29˚ 429 S, 144˚ 079 E) NSW; AMS R165698, Nocoleche

Nature Reserve, 11 km West of Wanaaring - Wilcannia Rd (29˚529 080 S, 144˚009

340 E) NSW; AMS R162733, Lake Peery NP (30˚ 439 280 S, 143˚ 299 150 E) NSW.

Diagnosis

A large member of the D. conspicillatus group (max SVL 60 mm) lacking a well-

defined canthal stripe and without a greatly enlarged first supralabial (first

supralabial not in contact with ventral edge of nasal scale). Dorsal scales on trunk

plate-like and markedly larger than smaller dorsolateral scales. Scales on nape

granular and only slightly larger than granules on side of neck. Scales on dorsal

surface of tail arranged in transverse rows (often of uniform size but can include

rows of both large and small scales). Pattern generally with dark, heavily spotted

flanks and a series of pale vertebral blotches or a continuous pale vertebral zone.

Description

SVL mm 40.55–60.21 (n536, mean 548.71, SD55.20). Proportions as % SVL:

AG 42.39–56.37 (n532, mean 548.83, SD50.03); T 28.38–42.56 (n530, mean

535.67, SD50.03); HL 17.38–22.41 (n536, mean 519.74, SD50.01). Head:

moderate and not strongly differentiated from neck; snout longer than diameter

of eye. HW 73.3–89.41% HL (n533, mean 581.53, SD50.04); HD 36–54.44%

HL (n533, mean 547.1, SD50.05); S 42.02–47.61% HL (n537, mean 545.01,

SD50.01); EE 23.42–32.78% HL (n533, mean 526.84, SD50.02); covered in

small granular scales; rostral shield large and lacking a medial groove, hexagonal

with 5–13 scales in contact with its posterior margin (n535, mean 58.69, mode

59, SD51.68); mental shield hemispherical, usually with a moderate process

extending medially from its posterior margin, 8–15 scales contacting posterior

edge (n536, mean 510.58, mode 511, SD51.54); supralabial scales 11–19

(n537, mean 515.51, mode 515, SD51.61), the first not enlarged and subequal

with the rest of the supralabial row which are not differentiated from the adjacent

loreal scales (Fig. 4D); infralabial scales 12–20 (n537, mean 515.76, mode 516,

SD51.69), all small and undifferentiated from adjacent chin scales; eye large,

pupil vertical with crenulated margin; ear small, round to horizontally elliptic.

Neck: broad with small granular scales on dorsal surface that are only slightly

larger than the adjacent scales on the lateral surfaces. Trunk: moderate and

somewhat stout; scales of dorsum plate-like and markedly larger than smaller

granules on flanks; granules small on ventral surface but increase in size on

pectoral region; preanal pores absent; a small cluster of postanal tubercles present

in both sexes but larger and more prominent in males. Limbs: moderate; forelimb

28.11–37.26% SVL (n534, mean 532.43, SD50.02); hindlimb 30.61–40.76% SVL

(n535, mean 535.80, SD50.03); digits moderate with no or only slight distal

expansion; subdigital lamellae granular (not a clearly defined series except for

small distal pair); 9–13 lamellae beneath fourth finger (n535, mean 510.94,

mode 510, SD51.11); 9–15 lamellae beneath fourth toe (n536, mean 511.86,

mode 512, SD51.20). Original tail: short, wide 44.34–78.82% tail length (n530,
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mean 560.81, SD50.08); spade-like and bluntly pointed (lacking an acute

attenuated tip); scales arranged in clear transverse bands which incorporate rows

of both large and small scales (or consist of scales that are more or less uniform in

size), each with a short blunt to sharp medial tubercle; 20–34 (n533, mean

525.06, mode 526, SD53.16) medial scale rows on tail from fracture plane (1st

autotomy septum) to tip; 10–18 (n533, mean 513.24, mode 513, SD51.50)

rows of scales across original tail (large row at maximum width); ventral scales

considerably smaller than dorsal scales. Regrown tail: with rounded distal end and

more uniform scalation that is not arranged in clear transverse rows.

Pattern (in spirit)

Variable. Most specimens tan to mid-brown with varying degrees of spotting;

most prominent on flanks. Dorsum with an overlay of fine, dark reticulations or a

more solid dark pattern. Vertebral zone with reduced pigment but often broken

by transverse bars, isolating a series irregular pale blotches along back. In some

specimens the vertebral zone is largely unpatterned and has a wavy edge where it

borders the darker paravertebral zone. Head, as for dorsal ground colour with

scattered dark flecks or blotches. Canthal stripe absent or very weak without

sharply defined edges and not contrasting strongly with other facial markings.

Limbs with fine reticulations, inner digits of forelimb with reduced pigmentation.

Ventral surfaces off-white, immaculate.

Comparisons

D. platyurus is readily distinguished from D. conspicillatus, D. laevis, D. hillii, D.

bilybara sp. nov., D. custos sp. nov. and D. barraganae sp. nov. by the condition of

the 1st supralabial (small and not differentiated from the rest of the supralabial

row in D. platyurus vs greatly enlarged and contacting ventral edge of nasal scale)

and by the absence of a well-defined canthal stripe (vs canthal stripe well-

developed).

Figure 12. Holotype of D. barraganae sp. nov. (NTM R21395). Musselbrook Reserve, Border Waterhole,
Northern Territory/Queensland border. (Image: Jeff Wright).

doi:10.1371/journal.pone.0111895.g012
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Distribution and Ecology

Occurs over much of eastern and central Queensland, from the Normanton and

around Cairns in the north, south to around Rockhampton in the east, and

throughout much of the channel country to west of the Great Dividing Range,

extending south as far as north-west New South Wales and north-east South

Australia (Fig. 3). Occurs in subhumid to arid woodland habitats on a range of

sand and clay based substrates (A. Emmott pers. com).

Comments

A black and white photographic image of the holotype of Diplodactylus platyurus

(BMNH 1946.8.11.38; Fig. 11) was kindly provided by Dr Harold Cogger. The

specimen, from Torrens Ck, Qld (21 2̊59S, 145 1̊49E) has an undifferentiated

supralabial row (i.e. no enlarged supralabials) a character that is only found in the

most easterly populations of the D. conspicillatus group occurring in Queensland

and NSW. A specimen from Torrens Ck, QM J47527 (the type locality),

displaying this character is included in the material examined.

The taxonomic assignment of two specimens from the Edward River region on

western Cape York Peninsula (QM J58251 Melon Yard, Strathgordon H,

14 4̊39120S, 142 1̊89E and QM J81110 Edward River, 14 2̊49360S, 142 0̊99360E)

remains unresolved. Whilst this population is geographically most proximate to

D. platyurus, these specimens have an enlarged 1st supralabial and may represent

an additional taxon not included in our limited genetic sampling.

Diplodactylus barraganae Couper, Oliver & Pepper sp. nov.

urn:lsid:zoobank.org:act:6DEE15D3-30FA-4C8F-89AF-9FB06DB43480

‘conspicillatus’ A (Oliver et al. 2009)

Gulf Fat-tailed gecko

Figs 6D, 12

Holotype

NTM R21395, Musselbrook Reserve, Border Waterhole (18˚ 369 300 S, 137˚ 599

180 E) NT/QLD border.

Paratypes

NTM R21886, NTM R21892, Sherwin Ck/Roper River Junction (14˚ 409 S, 134˚
229 E) NT; NTM R21088, Carpentaria Hwy, 100 km E Stuart Hwy (16˚ 259 350 S,

134˚ 109 480 E) NT; NTM R20606, Cape Crawford Area (16˚ 429 070 S, 135˚ 319

040 E) NT; NTM R20605, Cape Crawford Area (16˚539 420 S, 135˚409 310 E) NT;

QM J11035–37, Doomadgee Mission Stn (17˚559 480 S, 138˚499 120 E) QLD; QM

J51987, Lawn Hill NP (18˚429 300 S, 138˚ 289 300 E) QLD; QM J75143, Lawn Hill

(18˚ 429 300 S, 138˚ 289 480 E) QLD; QM J52723, Lawn Hill Stn, Century Project

Site (18˚ 459 S, 138˚ 350 E) QLD; AMS R162275, Riversleigh World Heritage Area

(19˚ 009 110 S, 138˚ 409 030 E) QLD; QM J85474, Riversleigh (19˚ 009 479 S, 138˚
409 060 E) QLD; QM J49251, Gregory R, nr ‘Rackham9s Roost’, Riversleigh Stn
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(19˚ 029 S, 138˚ 459 E) QLD; AMS R17974–, 75, Mount Isa (20˚ 449 S, 139˚ 299 E)

QLD.

Etymology

Named for Marı́a Elena Barragán (Fundacion Herpetologica Gustavo Orces.

Quito, Ecuador) in recognition of her contributions to reptile conservation and

public education.

Diagnosis

A small member of the D. conspicillatus group (max SVL 49 mm) with a bold

canthal stripe and greatly enlarged first supralabial (contacting ventral edge of

nasal scale). Mid-dorsal scales on trunk small and only slightly larger than the

dorsolaterals. Original tail spade-like and lacking an acute attenuated extension at

tip. Scales on dorsal surface of tail arranged in transverse rows (which include

rows of both large and small scales). Pattern not strongly contrasting, usually

some indication of a pale, jagged-edged vertebral zone.

Description

SVL mm 25.05–49.47 (n517, mean 541.75, SD56.80). Proportions as % SVL:

AG 45.12–55.81 (n517, mean 549.85, SD50.03); T 30.12–43.32 (n514, mean

536.70, SD50.03); HL 17.83–22.12 (n517, mean 520.11, SD50.01). Head:

moderate and not strongly differentiated from neck; snout longer than diameter

of eye. HW 73.1–92.91% HL (n517, mean 581.1, SD50.06); HD 40.1–53.4% HL

(n517, mean 547.7, SD50.04); S 42.66–53.43% HL (n517, mean 546.54,

SD50.02); EE 24.8–30.43% HL (n517, mean 527, SD50.02). Covered in small

granular scales; rostral shield large and lacking a medial groove, hexagonal with 5–

6 scales in contact with its posterior margin (n517, mean 55.12, mode 55,

SD50.40); mental shield hemispherical, usually with a moderate process

extending medially from its posterior margin, 10–14 scales contacting posterior

edge (n517, mean 511.41, mode 511, SD51.10); supralabial scales 15–19

(n517, mean 517.35, mode 519, SD51.42) with the first enlarged and

contacting ventral edge of nasal scale, the remaining series are small and not

differentiated from the adjacent loreal scales; Infralabial scales 13–18 (n517, mean

516.24, mode 516, SD51.01), all small and undifferentiated from adjacent chin

scales; eye large, pupil vertical with crenulated margin; ear small, round to

horizontally or vertically elliptic. Neck: broad with small granular scales on dorsal

surface that are only slightly larger than the adjacent scales on the lateral surfaces.

Trunk: moderate and somewhat stout; scales of dorsum small, only slightly larger

than dorsolateral scales; granules small on ventral surface but increase in size on

pectoral region; preanal pores absent; a small cluster of postanal tubercles present

in both sexes but larger and more prominent in males Limbs: moderate; forelimb

29.83–35% SVL (n517, mean 532.80, SD50.02); hindlimb 33.04–38.76% SVL

(n517, mean 536.03, SD50.02); digits moderate with slight distal expansion;

subdigital lamellae granular (not a clearly defined series except for small distal

pair); 8–14 beneath fourth finger (n517, mean 510.94, mode 511, SD51.37);
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10–15 beneath fourth toe (n517, mean 512.18, mode 513, SD 51.35); Original

tail: short, wide 46.81–63.84% tail length (n59, mean 554.58, SD50.07), spade-

like and bluntly pointed (lacking an acute attenuated extension at tip; Fig. 6D);

scales large and plate-like, arranged in clear transverse pattern that usually

incorporates rows of both large and small scales (Fig. 6D); larger scales with short

bluntly to sharply- tipped medial tubercle; 31–39 (n514, mean 534.92, mode

536, SD52.43) medial scale rows on tail from fracture plane (1st autotomy

septum) to tip; 12–16 (n514, mean 513.93, mode 515, SD51.44) rows of scales

across original tail (large row at maximum width); ventral scales considerably

smaller than dorsal scales. Regrown tail: with rounded distal end and more

uniform scalation that is not arranged in clear transverse rows.

Measurements and scale counts of holotype

NTM R21395 (male, Fig. 12) SVL540.58 mm, AG518.31 mm, L1513.09 mm,

L2513.94 mm, HL58.25 mm, HD53.33 mm, HW56.38 mm, S53.71 mm,

EE52.14 mm, TL514.77 mm, TW57.2 mm, scales contacting posterior edge of

rostral 56, scales contacting posterior edge of mental 511, lamellae beneath 4th

finger 510, lamellae beneath 4th toe 511, medial scale rows on tail from fracture

plane (1st autotomy septum) to tip 536, rows of scales across original tail 16,

supralabials 516, infralabials 516.

Pattern (in spirit)

Tan to mid-brown, suffused with darker pigment on back and flanks. Pattern

incorporates diffuse spotting and obscure reticulations and a pale, continuous or

broken, vertebral zone. Head with numerous dark scales that often form a fine

netted pattern. A moderately well-developed pale canthal stripe present, extending

from anterior edge of orbit to tip of snout and producing a distinctive ‘v’ shaped

marking. A diffuse dark zone on side of face extends posteriorly beyond eye to

temporal region. Limbs obscurely marked with vague spotting or netted pattern

Figure 13. Holotype of Diplodactylus bilybara sp. nov. (WAM R174500). 21 km south of Barradale,
Western Australia. (Image: Peter Waddington, QM).

doi:10.1371/journal.pone.0111895.g013

Cryptic Biogeography and Diversity in an Australian Gecko Lineage

PLOS ONE | DOI:10.1371/journal.pone.0111895 December 10, 2014 40 / 53



and inner digits of fore and hindlimb with reduced pigmentation. Ventral surfaces

off- white, immaculate.

Comparisons

Diplodactylus barraganae sp. nov. is readily distinguished from D. platyurus in

possessing an enlarged first supralabial that contacts the ventral edge of the nasal

scale (vs 1st supralabial small and not differentiated from the rest of the supralabial

row). It is distinguished from D. conspicillatus, D. laevis, D. bilybara sp. nov. and

D. custos sp. nov. in having small mid-dorsal scales that are only slightly larger

than the dorsolaterals (vs mid-dorsals enlarged and plate-like, conspicuously

larger than the dorsolaterals) and further distinguished from D. laevis, D. bilybara

sp. nov. and D. custos sp. nov. by the shape of the original tail (tail blunt, spade-

like without an acute attenuated extension at tip in D. barraganae sp. nov. vs tail

with an acute attenuated extension at tip).

Distribution and Ecology

Occurs over a broad band along the southern edge of the Gulf of Carpentaria,

from the Roper River region in the northwest, east and south as far as Mt Isa (

Fig. 3). The holotype was collected in ‘open woodland on red sandy soil’ (P.

Horner pers. com.).

Diplodactylus bilybara Couper, Pepper & Oliver sp. nov.

urn:lsid:zoobank.org:act:0405E99F-8082-4DA3-851B-6872D674A414

‘conspicillatus’ B (Oliver et al. 2009)

Western Fat-tailed Gecko

Figs 6E, 7G, 13

Holotype

WAM R174500 (formerly SAMA R22820), 21 km S Barradale (22˚ 559 S, 114˚
469E) WA.

Paratypes

WAM R132531–32, Burrup Peninsula (20˚ 409 360 S, 116˚ 459 080 E) WA; WAM

R132529, Burrup Peninsula (20˚ 409 490 S, 116˚ 449 370 E) WA; WAM R110058,

3.5 km S Karratha (20˚ 469 040 S, 116˚ 509 310 E) WA; WAM R110027, 6 km S

Karratha (20˚ 479 400 S, 116˚ 519 240 E) WA; WAM R165155, 8.5 km WSW

Yanyare River mouth (20˚ 509 400 S 116˚ 229 020 E) WA; WAM R159892, WAM

R159894, WAM R159940, WAMR159947, 10 km S Mallina homestead (20˚ 589

100 S, 118˚029 540 E) WA; WAM R165177, 9.5 km ESE Marda Pool (21˚039 470 S,

116˚ 149 000 E) WA; WAM R110182, WAM R110218, WAM R110220, 12.5 km

SW Millstream (21˚ 409 370 S, 116˚ 589 300 E) WA; WAM R134523, 8 km N

Exmouth (21˚ 529 120 S, 114˚ 079 010 E) WA; WAM R110148, 8 km S

Coolawanyah (21˚ 529 550 S, 117˚ 479 400 E) WA; WAM R163018, 7 km SSE

Mount Minnie (22˚ 109 100 S, 115˚ 339 390 E) WA; WAM R162059, 19.5 km SSW

Mount Amy (22˚ 259 090 S, 115˚ 509 160 E) WA; WAM R162052–53 21 km SSE
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Mount Amy (22˚ 269 050 S, 115˚ 559 490 E) WA; WAM R158331, WAM R159932,

Giralia homestead (22˚ 419 380 S, 114˚ 239 280 E) WA; SAMA R22905, 6 km S

Barradale (22˚ 529 S, 114˚ 529 E) WA; SAMA R22818, 11 km S Barradale (22˚ 529

300 S, 114˚ 509 E) WA; SAMA R22819, 9 km S Barradale (22˚ 539 S,114˚ 529 E)

WA; SAMA R22821 21 km S Barradale (22˚559 S, 114˚469E) WA; AMS R165713,

Jack Hills (26˚ 039 240 S, 117˚ 129 580 E) WA.

Etymology

Refers to the Pilbara region where this species occurs. The name Pilbara is said to

be derived from the Aboriginal word bilybara, meaning ’dry’ in the languages of

the Nyamal and Banyjima people.

Diagnosis

A large member of the D. conspicillatus group (max SVL 63 mm) with a well-

defined canthal stripe and a greatly enlarged first supralabial (first supralabial

contacts ventral edge of nasal scale). Dorsal scales on trunk plate-like and

markedly larger than smaller dorsolaterals. Scales on nape granular and only

slightly larger than granules on side of neck. Original tail with a short to moderate,

acute attenuated extension at tip; scales on dorsal surface of tail arranged in

transverse rows (often in a pattern of one large row followed by two small rows;

scales in the small rows , J the size of the scales in the adjacent large rows.

Pattern variable; reticulated or with obscure transverse bands and generally

incorporating numerous small pale spots. Dark pigment on crown and snout

contrast markedly with pale canthal stripe and lower jaw colour which extends

posteriorly as a pale bar towards the ear opening.

Description

SVL mm 39.2–60.8 (n528, mean 548.83, SD55.20). Proportions as % SVL: AG

44.60–54.16 (n527, mean 549.64, SD50.03); T 33.88–48.34 (n522, mean

543.86, SD50.03); HL 15.9–21.04 (n528, mean 518.57, SD50.01). Head:

moderate and not strongly differentiated from neck; snout longer than diameter

of eye. HW 79.89–92.08% HL (n528, mean 587.05, SD50.03); HD 43.7–55.7%

HL (n528, mean 549.8, SD50.02); S 43.31–47.87% HL (n528, mean 545.26,

SD50.01); EE 24.45–33.54% HL (n528, mean 528.23, SD50.02). Covered in

small granular scales; rostral shield large and lacking a medial groove, hexagonal

5–6 scales contacting posterior edge of rostral scale (n528, mean 55.29, mode

55, SD50.46); mental scale usually without (or with only a slight) process on

medial posterior margin, 9–14 scales contacting posterior edge (n528, mean

511.29, mode 512, SD51.21); supralabial scales 13–20 (n527, mean 516.78,

mode 517, SD51.87), with the first enlarged and contacting ventral edge of nasal

scale, the remaining series are small and not differentiated from the adjacent loreal

scales; infralabial scales 12–21 (n527, mean 516.96, mode 516, SD52.70), all

small and undifferentiated from adjacent chin scales; eye large, pupil vertical with

crenulated margin; ear small, round to horizontally elliptic. Neck: broad with

small granular scales on dorsal surface that are only slightly larger than the
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adjacent scales on the lateral surfaces. Trunk: moderate and somewhat stout;

scales of mid-dorsum plate-like and markedly larger than dorsolateral scales;

granules small on ventral surface but increase in size on pectoral region; preanal

pores absent; a small cluster of postanal tubercles present in both sexes but larger

and more prominent in males. Limbs: moderate; forelimb 24.87–35.85% SVL

(n528, mean 531.13, SD50.02); hindlimb 27.46–38.83% SVL (n528, mean

533.73, SD50.02); digits moderate with no or only slight distal expansion;

subdigital lamellae granular (not a clearly defined series except for small distal pair

which tend to be long and narrow); 8–15 lamellae beneath fourth finger (n528,

mean 511.46, mode 513, SD51.69); 10–17 lamellae beneath fourth toe (n528,

mean 513.18, mode 513, SD51.52). Original tail: short, wide 41.16–58.1% tail

length (n522, mean 546.66, SD50.04), with a short to moderate, acute

attenuated extension at tip (Fig. 6E); scales arranged in clear transverse bands

which incorporate rows of both large and small scales (often in a pattern of one

large row followed by two small rows, of which the scales in the small rows are

much less than K the size of the scales in the large rows (Fig. 6E); each large scale

bears a short blunt to sharp medial tubercle); 31–49 (n523, mean 540.09, mode

541, SD54.73) medial scale rows on tail from fracture plane (1st autotomy

septum) to tip; 10–15 (n524, mean 513.21, mode 514, SD51.25) rows of scales

across original tail (large row at maximum width); ventral scales considerably

smaller than dorsal scales. Regrown tail: with rounded distal end and more

uniform scalation that is not arranged in clear transverse rows.

Measurements and scale counts of holotype

WAM R174500 (male, Fig. 13). SVL547.45 mm, AG523.65 mm, L1513.45 mm,

L25115.97 mm, HL58.92 mm, HD54.97 mm, HW57.91 mm, S54.27 mm,

EE52.45 mm, TL5,16.89 mm (tail bent sideways during preservation),

TW59.8 mm, scales contacting posterior edge of rostral 56, scales contacting

posterior edge of mental 510, lamellae beneath 4th finger 513, lamellae beneath

4th toe 514, medial scale rows on tail from fracture plane (1st autotomy septum)

to tip 537, rows of scales across original tail 14, supralabials 514, infralabials

520.

Pattern

Variable. Generally reddish- brown or grey. Most specimens with a series of

irregular, dark wavy bands across back that usually extend across the vertebral

zone (only one specimen, WAM R110027 has an unbroken, paler vertebral zone).

There is usually some degree of fine spotting on back and flanks and in some

specimens the spots extend across the dorsum in transverse rows. The delineation

between the base colour and darker dorsal patterns ranges from moderate to

sharply contrasting. Head generally with dark crown. A prominent, pale canthal

stripe present, extending from anterior edge of orbit to tip of snout and producing

a distinctive ‘v’ shaped marking which contrasts with the darker dorsal and lateral

head markings. A broad dark zone on side of face extends posteriorly beyond eye

to temporal region. A pale zone below eye extends to ear. Limbs mottled or
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spotted and inner digits of forelimb with reduced pigmentation. Ventral surfaces

off-white, immaculate.

Comparison

Diplodactylus bilybara sp. nov. is readily distinguished from D. platyurus in

possessing an enlarged first supralabial that contacts the ventral edge of the nasal

scale (vs 1st supralabial small and not differentiated from the rest of the supralabial

row). It is distinguished from D. conspicillatus, D. hillii and D. barraganae sp. nov.

by the shape of its original tail (tail with short to moderate, acute attenuated

extension at tip in D. bilybara sp. nov. vs tail blunt, spade-like without an

attenuated tip). It is distinguished from D. laevis by the condition of the scales on

the nape and top of head (scales granular and not appreciably larger than those on

sides of neck in D. bilybara sp. nov. vs scales plate-like, appreciably larger than

those on the sides of the neck). D. bilybara sp. nov. is most like D. custos sp. nov.

but differs from this species in the following respects: distal half of original tail

with alternating rows of large and small scales (generally 1 large row followed by 2

small rows) - scales in the small rows , J the size of the scales in the adjacent

large rows vs tail scalation generally more uniform; if smaller scale rows present,

these rarely form a double row and the small scales are , K the size of the scales

in the adjacent large rows for D. custos sp. nov.; dark pigment on crown and snout

contrast markedly with pale canthal stripe and lower jaw colour which extends

posteriorly towards the ear as a pale bar vs dark pigment on crown and snout

generally not contrasting sharply with pale canthal stripe and lower jaw colour for

D. custos sp. nov., trunk heavily pigmented and pattern usually incorporating

numerous small pale spots vs body pattern often diffuse and generally without

numerous pale spots, usually with wavy, dark transverse bands across back for D.

custos sp. nov..

Distribution and Ecology

Occurs in the Carnarvon, west Pilbara and west Gascoyne regions along the

central west coast of Western Australia (Fig. 3). It is most abundant on less rocky

Figure 14. Holotype of D. custos sp. nov. (WAM R164780). The Grotto, Western Australia. (Image: Peter
Waddington, QM).

doi:10.1371/journal.pone.0111895.g014
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habitats such as Triodia sandplains and Mulga woodlands on sandy loam

substrates (B. Maryan pers. com.).

Diplodactylus custos Couper, Oliver & Pepper sp. nov.

urn:lsid:zoobank.org:act:303FDF6F-03BA-45A5-B2A9-10F86E98A799

‘conspicillatus’ E (Oliver et al. 2009)

Kimberley Fat-tailed gecko

Figs 6F, 7H, 14

Holotype

WAM R164780, The Grotto (15˚ 439 040 S, 128˚ 159 350 E) WA.

Paratypes

WAM R77417, Port Warrender (14˚ 349 S, 125˚ 489 150 E) WA; WAM R78243,

Mitchell Plateau (14˚ 449 S, 125˚ 449 E) WA; WAM R172916, Doongan Stn (15˚
139 44.50 S, 125˚129 30.40 E) WA; WAM R132713, 30 km SSE Wyndham (15˚429

430 S, 128˚159 560 E) WA; SAMA R63942, The Grotto (15˚439 040 S, 128˚159 350

E) WA; WAM R162453, 20 km W Kununurra (15˚ 459 590 S, 128˚ 409 180 S) WA;

WAM R85120–21, Kununurra (15˚ 469 S, 128˚ 449 E) WA; WAM R119666,

Cockburn Ra. (15˚ 509 S, 128˚ 029 E) WA; WAM R172853, Ellenbrae Stn (15˚ 599

020 S, 127˚ 039 140 E) WA; WAM R145042, Koolan Island (16˚ 079 540 S, 123˚ 459

290 E) WA; WAM R11255, Wotjulum (16˚119 S, 123˚379 E) WA; WAM R172675,

Talbot Bay (16˚ 209 070 S, 124˚ 039 100 E) WA; WAM R70374, near Lissadell

homestead (16˚ 409 S, 128˚ 239 130 E) WA; WAM R103420, WAM R103448,

Bungle Bungle NP (17˚ 249 S, 128˚ 459 E) WA.

Etymology

From the latin for guard, with reference to the Australian Wildlife Conservancy

(AWC) and their ambitious and effective conservation and research programs in

the Kimberley (where this species is endemic) and elsewhere in Australia. Used as

a noun in apposition.

Diagnosis

A large member of the D. conspicillatus group (max SVL 61 mm) with a well-

defined canthal stripe and a greatly enlarged first supralabial (first supralabial

contacts ventral edge of nasal scale). Mid-dorsal scales on trunk plate-like and

markedly larger than smaller dorsolaterals. Scales on nape granular and only

slightly larger than granules on side of neck. Original tail with a short, acute

attenuated extension at tip (Fig. 6F); scales on dorsal surface arranged in

transverse rows generally of uniform size but if smaller scale rows are present,

these rarely form a double row and the small scales are , K the size of the scales

in the adjacent large rows (Fig. 6F). Dark pigment on crown and snout generally

not contrasting sharply with pale canthal stripe and lower jaw colour. Body

pattern often diffuse and generally without numerous pale spots; may incorporate

wavy, dark transverse bands.
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Description

SVL mm 42.17–58.23 (n513, mean 550.58, SD55.75). Proportions as % SVL:

AG 45.7–52.75 (n510, mean 549.32, SD50.02); T 34.91–51.34 (n511, mean

542.13, SD50.04); HL 16.34–21.15 (n513, mean 518.85, SD50.02). Head:

moderate and not strongly differentiated from neck; snout longer than diameter

of eye. HW 73.73–89.14% HL (n512, mean 581.50, SD50.05); HD 42.5–52.5%

HL (n512, mean 547.3, SD50.03); S 38.78–48.32% HL (n512, mean 544.51,

SD50.03); EE 24.26–30.40% HL (n512, mean 527.62, SD50.02). Covered in

small granular scales; rostral shield large and lacking a medial groove, hexagonal

with 5–8 scales contacting posterior edge of rostral scale (n514, mean 55.57,

mode 55, SD50.94); mental scale sometimes with a slight process on medial

posterior margin; 10–15 scales contacting posterior edge (n516, mean 512.25,

mode 512, SD51.50); supralabial scales 14–18 (n515, mean 515.93, mode 516,

SD51.12) with the first enlarged and contacting ventral edge of nasal scale, the

remaining series are small and not differentiated from the adjacent loreal scales;

infralabial scales 13–21 (n514, mean 516.86, mode 516, SD52.71) all small and

undifferentiated from adjacent chin scales; eye large, pupil vertical with crenulated

margin; ear small, round to horizontally elliptic. Neck: broad with small granular

scales on dorsal surface that are only slightly larger than the adjacent scales on the

lateral surfaces. Trunk: moderate and somewhat stout; scales of mid-dorsum

plate-like and markedly larger than smaller dorsolateral scales; granules small on

ventral surface but increase in size on pectoral region; preanal pores absent; a

small cluster of postanal tubercles present in both sexes but larger and more

prominent in males. Limbs: moderate; forelimb 26.79–35.62% SVL (n513, mean

531.06, SD50.03); hindlimb 28.13–39.82% SVL (n513, mean 533.5, SD50.04);

digits moderate with slight distal expansion; subdigital lamellae granular and not a

clearly defined series (except for small distal pair which tend to be broadly oval

and displaced laterally by claw); 9–16 lamellae beneath fourth finger (n515, mean

511, mode 511, SD51.60); 10–15 lamellae beneath fourth toe (n515, mean

511.93, mode 512, SD51.16). Original tail: short, wide 35–54.72% tail length

(n510, mean 546.0, SD50.05) with a short, acute attenuated extension on tip (

Fig. 6F); Original tail with scales arranged in clear transverse rows which are

largely of uniform size (where rows of smaller scales occur, they are >K the size

of the scales in the larger scale rows) each scale bearing a bluntly-tipped medial

tubercle (Fig. 6F); 28–41 (n512, mean 533.42, mode 532, SD53.90) medial

scale rows on tail from fracture plane (1st autotomy septum) to tip; 12–14 (n512,

mean 512.92, mode 512, SD50.90) rows of scales across original tail (large row

at maximum width); ventral scales considerably smaller than dorsal scales.

Regrown tail: with rounded distal end and more uniform scalation that is not

arranged in clear transverse rows.

Measurements and scale counts of holotype

WAM R164780 (male, Fig. 14). SVL556.36 mm, AG527.73 mm, L1515.41 mm,

L2517.61 mm, HL59.21 mm, HD54.5 mm, HW58.21 mm, S54.45 mm,

EE52.8 mm; TL522.74 mm, TW510.45 mm, scales contacting posterior edge of
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rostral 55, scales contacting posterior edge of mental 513, lamellae beneath 4th

finger 512, lamellae beneath 4th toe 515, medial scale rows on tail from fracture

plane (1st autotomy septum) to tip 530, rows of scales across original tail 12,

supralabials 516, infralabials 520.

Pattern

Variable. Tan to grey with darker overlay. Flanks and dorsum not strongly

contrasting with ground colour and with or without pale spotting. Vertebral zone

broken by dark, obscure to well-formed transverse bars. A pale canthal stripe

present, extending from anterior edge of orbit to tip of snout and producing a

distinctive ‘v’ shaped marking that does not contrast sharply with other facial

markings. A dark zone on side of face extends posteriorly beyond eye to temporal

region. Limbs mottled or spotted and inner digits of forelimb with reduced

pigmentation. Ventral surfaces off-white, immaculate.

Comparison

Diplodactylus custos sp. nov. is readily distinguished from D. platyurus in

possessing an enlarged first supralabial that contacts the ventral edge of the nasal

scale (vs 1st supralabial small and not differentiated from the rest of the supralabial

row). It is distinguished from D. conspicillatus, D. hillii and D. barraganae sp. nov.

by the shape of its original tail (tail with short attenuated tip in D. custos sp. nov.

vs tail blunt, spade-like without an attenuated tip). It is distinguished from D.

laevis by the condition of the scales on the nape and top of head (scales granular

and not appreciably larger than those on sides of neck in D.custos sp. nov. vs scales

plate-like, appreciably larger than those on the sides of the neck). D. custos sp.

nov. is most like D. bilybara sp. nov. but differs from this species in the following

respects: scalation of original tail reasonably uniform; if smaller scale rows

present, these rarely form a double row and the small scales are ,K the size of the

scales in the adjacent large rows vs distal half of original tail with alternating rows

of large and small scales (generally 1 large row followed by 2 small rows) - scales in

the small rows ,J the size of the scales in the adjacent large rows for D. bilybara

sp. nov.; dark pigment on crown and snout generally not contrasting sharply with

pale canthal stripe and lower jaw colour vs dark pigment on crown and snout

contrast markedly with pale canthal stripe and lower jaw colour which extends

posteriorly towards the ear as a pale bar in D. bilybara sp. nov.; body pattern often

diffuse and generally without numerous pale spots, usually with wavy, dark

transverse bands across back vs trunk heavily pigmented and pattern usually

incorporating numerous small pale spots for D. bilybara sp. nov. Additionally, D.

custos sp. nov. usually has a shorter and less pronounced acute attenuated

extension on the original tail tip than D. bilybara sp. nov.

Distribution and Ecology

Known from widespread but scattered localities from across the Kimberley region

of north-western Australia, ranging from Kununurra in the north-west, south to

Purnululu National Park, to around Derby in the south-west, with additional
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records from the Yampi Peninsula and high rainfall zone of the north-west

Kimberley. Has been recorded from Koolan Island off the west Kimberley, the

only insular record of a member of the D. conspicillatus complex (Fig. 3).

A single specimen from Ellenbrae Station in the central Kimberley was collected

from open Eucalyptus woodland on the top of a stony rise with heavy clay soils,

while specimens from around Kununurra were collected from rocky hillsides

vegetated with open grassy woodland (P. Oliver pers obs).

Key to the Diplodactylus conspicillatus species group

1) 1st supralabial enlarged, contacting ventral edge of nasal scale (Fig. 4C) and

prominent, pale canthal stripe present (Fig. 4A) — 2

1st supralabial small, subequal to the rest of the supralabial row (Fig. 4D) and

no prominent canthal stripe (Fig. 4B) — platyurus (eastern Australia, Qld &

NSW)

2) Mid-dorsal scales small and only a little larger than the dorsolateral scales (

Fig. 5D) — 3

Mid-dorsal scales conspicuously larger than the dorsolateral scales (Fig. 5C)

— 4

3) Original tail bearing alternating transverse rows of different sized scales and

rows of larger scales each with a bluntly spinose, central tubercle. More than

30 scales along dorsal midline of tail from fracture plane to tip.(Fig. 6D) —

barraganae (NW Qld & NE NT)

Original tail without clearly defined transverse rows of different sized scales;

scales large and slightly spinose (pine cone-like appearance). Fewer than 30

scales on dorsal midline of tail, from fracture plane to tip.(Fig. 6C) — hillii
(N NT)

4) Scales on nape granular, not appreciably larger than those on side of neck (

Fig. 5A) — 5

Scales on nape and top of head plate-like and appreciably larger than those

on side of neck (Fig. 5B). Original tail terminating with an acute attenuated

extension at tip (Fig. 6B) — laevis

5) Original tail terminating with a short to moderate, attenuated extension at

tip (Figs 6E & F) — 6

Original tail spade-like, lacking an acute attenuated extension at tip (Fig. 6A)

— conspicillatus

6) Distal half of tail with alternating rows of large and small scales (generally 1

large row followed by 2 small rows); scales in the small rows ,J the size of

the scales in the adjacent large rows (Fig. 6E). Dark pigment on crown and

snout contrast markedly with pale canthal stripe and lower jaw colour which

extends posteriorly towards the ear as a pale bar (Fig. 7G). Trunk heavily

pigmented and pattern usually incorporating numerous small pale spots —

bilybara (Pilbara, WA)
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Tail scalation generally more uniform; if smaller scale rows present, these

rarely form a double row and the small scales are ,K the size of the scales in

the adjacent large rows (Fig. 6F). Dark pigment on crown and snout generally

not contrasting sharply with pale canthal stripe and lower jaw colour (

Fig. 7H). Body pattern often diffuse and generally without numerous pale

spots; may incorporate wavy, dark transverse bands — custos (Kimberley,

WA)

Supporting Information

Figure S1. Maximum Likelihood Phylogeny for complete dampling of the

Diplodactylus conspicillatus complex and outgroups. Estimated from mito-

chondrial ND2 data using RAxML with Maximum Likelihood support Boostrap

supports shown for key nodes.

doi:10.1371/journal.pone.0111895.s001 (PDF)

Table S1. A. Measures of inter-specific genetic diversity and divergence. B. Intra-

specific measures of genetic diversity and divergence. C. Diversity and

demographic summary statistics.

doi:10.1371/journal.pone.0111895.s002 (DOCX)

Appendix S1. Additional material examined.

doi:10.1371/journal.pone.0111895.s003 (DOCX)
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