Supplementary Information for "A Theoretically-Sufficient And Computationally-Practical Technique For Deterministic Frequency Seriation"

Carl P. Lipo, Mark E. Madsen, and Robert C. Dunnell

March 2015

S1 Text: Pseudo-code representation of the IDSS algorithm

Algorithm 1 Algorithm for IDSS seriation

-	ire: Input file <i>I</i> format:		
1: T	ab-delimited text, column 0 contains	assemblage name	
	Remaining columns contain type counts as integers		
3: p	procedure IDSS(I)		
4:	Read input file <i>I</i>		
5:	Calculate relative frequency of each type		
6:	Calculate max frequency difference between assemblage pairs		
7:	Create list of assemblages A		
8:	for all triplets of assemblages T do		
9:	if using continuity threshold t_c then		
10:	if max frequency difference $> t_c$ for pairs $\in T$ then		
11:	Skip triplet		
12:	end if		
13:	end if		
14:	if triplet T is valid given unimodality for all types then		
15:	Store triplet in candidate solutions C		
16:	end if		
17:	$R \leftarrow ext{assemblages} \notin \mathbf{C}$	Remaining assemblage	
18:	repeat		
19:	for all assemblages $a \in R$ do		
20:	if using continuity threshold t_c then		
21:	if max freq difference $> t_c$ for <i>a</i> and all C then		
22:	Skip assemblage <i>a</i> for this loop		
23:	end if		
24:	end if		
25:	if assemblage a + candidate solution $c \in \mathbf{C}$ then		
26:	Replace c in \mathbf{C} with	c + a	
27:	Remove <i>a</i> from <i>R</i>	▷ Grow existing solution	
28:	end if		
29:	end for		
30:	until R = or loop repeats with	no changes	
31:	for all candidate solutions $c \in \mathbf{C}$ do		
32:	if c is strict subset of another solution in C then		
33:	Remove c from C		
34:	end if		
35:	end for		
36:	end for	\triangleright C now contains the set of solution	
37:	Output C in various formats		
38: e	nd procedure		