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1 Transition matrix estimation

1.1 Methodology

It is challenging to estimate the transition probabilities of shade tolerance in a Markov chain model based on
forest inventory data, because the sampling interval of plots is highly irregular. To overcome this difficulty,
we employed here the original methodology developed in Lienard et al. (2014). Specifically, we applied Gibbs
sampling, a Monte Carlo Markov Chain implementation (Robert and Casella, 2004) to estimate the transition
probabilities, with the specific guidelines provided by Pasanisi et al. (2012) (see also Gelfand and Smith,
1990). We provide in the following a brief description of the algorithm; please refer to Lienard et al. (2014)
for an extended description.

The general idea is to use repeated measurements on the same plot to obtain the underlying transition
matrix. Informally, we first discard all plots that were measured only once, and then align the measurements
in sequences, independently of the year of measurement. These sequences are sparse, as the surveys in
the database have be with irregular intervals. The core idea of our implementation of the Gibbs sampling
algorithm is to estimate both the transition matrix and the missing values of these sequences. To do this, we
perform two iterative steps. First, we sample compatible values for filling the missing measurements using a
model of the matrix transition: this results in a model of the missing data. Second, we sample transition
probabilities values to derive a new model of the matrix that are compatible with the modeled missing data.

More formally, we first constructed a temporal sequence Sp of the shade tolerance index for each plot p,
by inserting the discretized value of shade tolerance index s(p,i) measured in the i-th year, at position i of Sp.
Each temporal sequence Sp is mostly composed of unknown values, as only a fraction of the forest plots were
surveyed each year. We then reduced the sparseness of these sequences by averaging the values in 3-year
bins. We further extracted sub-sequences of length 5 (thus spanning 15 years) that fulfilled three criteria: (a)
each subsequence starts with a known value, (b) each subsequence contains at least two known values. Let
Y be the matrix constructed using all the sub-sequences, with rows corresponding to successive measures
of different plots and columns corresponding to different time steps. The initialization of Gibbs sampling
consists of replacing the missing values in Y at random, resulting in so-called augmented data Z [0]. Then,
the two following steps are iterated H = 500 times:

1. in the parameter estimation step, we draw a new transition matrix Φ
[h]
i conditional on the augmented

data Zh−1:

Φ
[h]
i |Z

[h−1] ∼ Dir(γi,1 + w
[h−1]
i,1 , ..., γi,r + w

[h−1]
i,r ) (1)

with Dir is the Dirichlet distribution, γ are biasing factors set here uniformly to 1 as we include no
prior knowledge on the shape of the transition matrix (Pasanisi et al., 2012), and wi,j are the sufficient
statistics defined as

wi,j =
∑

t ∈ years

∑
k ∈ plots

1{Z[h−1]
k,t−1=si & Z

[h−1]
k,t =sj}

(2)

2. in the data augmentation step, we draw new values for the missing states:

for the earliest data t = 1, P(z
[h]
k,1 = sj |z[h−1]k,2 = si,Φ

[h]) ∝ Φ
[h]
j,i (3)

for the latest data t = T, P(z
[h]
k,T = sj |z[h]k,T−1 = si,Φ

[h]) ∝ Φ
[h]
i,j (4)

otherwise, P(z
[h]
k,t = sj |z[h]k,t−1 = si1 , z

[h−1]
k,t+1 = si2 ,Φ

[h]) ∝ Φ
[h]
i1,j
× Φ

[h]
j,i2

(5)

We performed the whole procedure R = 100 times. We ignored the first B = 100 “burn-in” iterations,
leaving R× (H −B) = 4000 transition matrices for each ecoregion. The standard errors of the mean of the
transition probabilities were consistently small, so we were finally able to derive the matrices presented in
main text (as well as Figures 2 and 3 in this appendix) as the mean values.
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1.2 Transition period

The precise choice of using 3-year transitions result from a tradeoff between:

• the need of individual-based models, which usually manipulate a 1-year transition period as their time
step (e.g. Strigul et al., 2008).

• the usual time interval between successive of inventories is 5 years (as stated in the new unified FIA
protocol — regional protocols before 1999 used different intervals).

The estimation method that is we relied on is suited to provide a precise estimate has been conceived
specially for dealing with datasets having irregular measurement intervals (Lienard et al., 2014). Using this
methodology, the choice of a rather short transition interval of 3 years does not substantially impact the
underlying dynamics modeled; on the contrary, computing the 5-year transition matrices would force to
discard all transitions over 3 years and 4 years observed in some older protocols - thus resulting in a less
precise modeling of transitions. Also, multiplying the transition matrix by itself doubles the time steps - thus
it is very easy to deduce transition matrices over longer intervals.
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2 Shade tolerance classification across the US

Table 1: Shade tolerance indicators summarized for each US province.

Province Plots Resampled plots Distribution width Spectral gap

232 91856 60751 0.5 0.069
212 82401 36975 0.9 0.023
231 54649 35165 0.6 0.081
M221 23137 13696 0.7 0.060
223 24766 10578 0.8 0.035
221 20646 9491 0.8 0.035
222 23594 9462 0.9 0.033
211 14060 6003 0.8 0.034
M211 10345 4712 0.6 0.047
251 9855 3478 0.8 0.040
234 2605 1062 0.8 0.064
M231 2040 980 0.7 0.059
M223 1268 677 0.7 0.047
M331 5470 616 0.7 0.032
255 2846 542 0.7 0.085
332 1565 479 0.7 0.052
313 3499 452 0.4 0.058
M261 4755 374 0.7 0.049
341 2338 353 0.4 0.046
411 585 328 0.7 0.113
M341 2472 313 0.7 0.054
331 1819 295 0.7 0.043
M334 634 295 0.5 0.073
M242 5148 224 0.9 0.094
M313 2130 174 0.5 0.052
M332 4416 146 0.7 NA
321 1509 91 0.4 NA
322 470 65 0.4 NA
342 927 42 0.6 NA
263 418 34 0.6 NA
M333 3105 33 0.9 NA
M262 250 13 0.7 NA
242 544 13 0.8 NA
261 144 7 0.8 NA
262 5 0 0.5 NA
315 3597 0 0.8 NA
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3 Dynamics of relative shade tolerance index

To investigate the dynamics of shade tolerance index in the early years of each area delimited based on the
ecoregion classification, we first computed for each ecoregion the value of shade relatively to their first value
(that is, the average value of shade tolerance index for stands that are one year old), and pooled together
ecoregions belonging to the same area (with either “wide” or “narrow” distribution, and either “fast” or
“slow” convergence). We further modeled the dynamics with a piecewise linear model with two segments, by
fitting them to the formula:

y =


αx if x < m

αm+ βx otherwise

As we aligned the shade tolerance index to be 0 for the earliest stand age, this formula constraints the
starting value y = 0. We performed the optimization using the Gauss-Newton algorithm, initialized with
reasonable starting guesses (Bates and Watts, 1988). After convergence, all parameters α, m and β were found
to be significantly different from 0 (one-sample two-sided t-tests, n between 7753 and 181718, p < 0.001).
Due to the spread of the shade tolerance index, the fits were overall poor, with residual standard errors
between and 0.135 and 0.260: while the established piecewise linear models are useful to highlight trends
in the dataset, they should be used with caution when deriving quantitative predictions of shade tolerance
index from the stand age.

The conceptual model predicts a decrease of the first stages followed by an increase. Specifically, ecoregions
with a wide distribution of shade tolerance index exhibit the expected pattern regardless of their convergence
speeds (bottom panels of Figure 1). Their computed inflection point, around 16-18 years, is further consistent
with the study of the White Pine-Eastern Hemlock forests. Ecoregions characterized as having a narrow
distribution and a slow convergence exhibits an early decrease of shade tolerance, however there is barely any
following increase (top-right panel of Figure 1, the β slope is one order of magnitude lower than the other
parameters). Finally, the area characterized by a narrow distribution and a fast convergence exhibit a pattern
exactly opposite to what we expect in the shade tolerance driven succession, with an early increase followed
by a decrease.
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Figure 1: Relative shade tolerance index per area (in black, the error bars are standard errors of the mean) and
piecewise linear regression (in red) with α being the slope of the first segment, β the slope of the second segment and m
the age of the inflection point.
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4 Transitions matrices computed on data subsets

Figure 2: 3-year transition matrices computed on the subset of plots with a stand age less than 20 years. The transitions
are obviously much more noisy than the ones obtained on the full dataset (in main text), which is expected due to the
very limited number of re-sampled young plots. Except for ecoregion “M211”, the early decrease of shade tolerance
index predicted in the conceptual model is apparent in the matrices, with probabilities of decrease (transitions under
the diagonal) superior to the probability of increase (transitions above the diagonal). The notations are similar to the
ones in main text.
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Figure 3: 3-year transition matrices computed on the subset of plots with a stand age more or equal to 20 years. The
transitions mostly match the ones obtained on the full dataset (displayed in main text), confirming that transitions in
the early stages (Figure 2 in this appendix) are not overall substantially contributing to the transition matrices. The
notations are similar to the ones presented in main text.

References

Bates, D. M. and Watts, D. G. (1988). Nonlinear regression: iterative estimation and linear approximations.
Wiley Online Library.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities.
Journal of the American statistical association, 85(410):398–409.

Lienard, J., Gravel, D., and Strigul, N. S. (2014). Data-intensive multidimensional modeling of forest dynamics.
http://dx.doi.org/10.1101/005009.

Pasanisi, A., Fu, S., and Bousquet, N. (2012). Estimating discrete markov models from various incomplete
data schemes. Computational Statistics & Data Analysis, 56(9):2609–2625.

Robert, C. P. and Casella, G. (2004). Monte Carlo statistical methods, volume 319. Citeseer.

Strigul, N., Pristinski, D., Purves, D., Dushoff, J., and Pacala, S. (2008). Scaling from trees to forests:
tractable macroscopic equations for forest dynamics. Ecological Monographs, 78(4):523–545.

8


	Transition matrix estimation
	Methodology
	Transition period

	Shade tolerance classification across the US
	Dynamics of relative shade tolerance index
	Transitions matrices computed on data subsets

