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Supplementary Note S11

Active versus passive representation of the Lotka-Volterra equations2

In previous studies [3–6] competition was defined as di,j , the rate at which an individual of a species i3

dies because of the presence of an individual of species j. This rate is not the same as our ci,j , which4

represents the rate at which an individual of species j looks for resources common to species i. If wi,j(ζ)5

is the competition kernel of species j over species i, and Ci,j(ζ) is the density of species j as it appears6

to species i, then in the original heteromyopia model [6] the competition terms are expressed as di,jIi,j7

with Ii,j =
∫
wi,j(ζ)Ci,j(ζ)dζ. In our parameterisation, making use of a similar notation as in previous8

papers [4, 6], the competition terms are expressed as ci,jI
′
i,j with I ′i,j =

∫
wi,j(ζ)Cj,i(ζ)dζ.9

An approximate value of di,j in terms of ci,j is given by di,j = ci,j/A
(c)
i,j , where A

(c)
i,j is the area obtained10

from the mean distance over which species j interacts with species i. This is so because ci,j is the rate at11

which species j looks for resources, and the resources that it takes are distributed within the area in which12

its interactions take place, i.e. the rate c
(c)
i,j is related to the resources per capita that the species requires.13

The parameterisation of d could be thought of as a passive representation, while that used in our study14

is an active representation. The rate di,j is passive because it is related to how the individual of species i15

experiences the competition exerted by other individuals. The interaction ranges are defined by the range16

over which the individual of species i is susceptible to the presence of individuals of species j.17

In contrast, the rate ci,j is an active representation, related to the competitive force that individuals of18

species j exert over species i. The interaction ranges in this representation are related to the distance over19

which individuals of species j acquire resources. An important difference in model behaviour is that with20

the active representation, increasing the radius of competition doesn’t increase the net competitive effect21

exerted by an individual, whereas in the passive representation of [6] a greater radius implies on average22

an influence on a larger number of neighbours. This means that the total impact of an individual increases23

with the radius over which it acquires resources, causing the two parameters involved in competitive24

interactions (distance and resource requirements) to no longer be independently controlled. In some25

instances it is possible to relate different stochastic processes by a similarity transformation [7–9], and the26

active and passive representations are one such case. This means that they are fully equivalent if their27

rates are chosen appropriately, i.e. di,j = ci,j/A
(c)
i,j .28

We have selected the active representation because its known algorithmic implementation is more29
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computationally efficient than the passive representation, in addition to the conceptual advantages. A30

major conceptual difference from the original heteromyopia model [6] is that increasing the radius of31

competitive interactions effectively reduces their intensity, since the rate at which an individual acquires32

resources remains the same though distributed over a greater area. This makes it easier to separate the33

effects of an increase in competition radius from the net increase in competition across the system as a34

whole.35

As a result of the active representation of competition, our simulations do not employ the Gillespie36

algorithm for updating individuals, as has been more common in previous work on IBMs in plants. Our37

choice to make selection of individuals entirely random is a straightforward approach which is commonly38

recommended for spatially-explicit reaction-diffusion problems (e.g. [10]). The Gillespie algorithm is39

more suitable for simulations which use a passive representation of competition since it increases the40

likelihood of selecting an individual with many neighbours. In our simulation, individuals within crowded41

neighbourhoods will automatically die more often because there are more neighbours capable of killing42

them. Therefore even if each individual is chosen with equal probability, individuals in clusters have43

a higher probability of affecting another individual. The particular algorithm chosen should not affect44

the results; see [11] for a description of many different methods employed to simulate spatially-explicit45

reaction-diffusion problems and their recommended applications.46
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