Agincourt Regression Estimation Results Tables

Table 1. Model M1 Estimation Results

Variable	Coefficient	(Std. Err.)
Outcome Equation: [F:I]		
age $=20$	-0.174	(0.230)
age $=25$	-0.339	(0.225)
age $=30$	-0.303	(0.216)
age $=35$	-0.514*	(0.210)
age $=40$	-0.551*	(0.222)
age $=45$	-0.580**	(0.219)
age $=50$	0.016	(0.299)
age $=55$	-0.371	(0.251)
age $=60$	-0.276	(0.263)
age $=65$	-0.341	(0.261)
age $=70$	-0.543*	(0.274)
age $=75$	-0.556*	(0.282)
age $=80$	-0.289	(0.317)
sex $=1$	-0.039	(0.245)
age $=20$ and sex $=1$	-0.041	(0.313)
age $=25$ and sex $=1$	-0.433	(0.313)
age $=30$ and sex $=1$	-0.595^{\dagger}	(0.319)
age $=35$ and sex $=1$	-0.317	(0.301)
age $=40$ and sex $=1$	-0.369	(0.328)
age $=45$ and sex $=1$	-0.158	(0.317)
age $=50$ and sex $=1$	-0.966*	(0.377)
age $=55$ and sex $=1$	-0.285	(0.371)
age $=60$ and sex $=1$	-0.222	(0.354)
age $=65$ and sex $=1$	-0.355	(0.352)
age $=70$ and sex $=1$	0.242	(0.394)
age $=75$ and sex $=1$	5.229**	(0.331)
age $=80$ and sex $=1$	-0.363	(0.429)
village $=2$	-0.021	(0.179)
village $=3$	0.003	(0.156)
village $=4$	-0.017	(0.185)
village $=5$	0.363^{\dagger}	(0.191)
village $=6$	-0.140	(0.182)
village $=7$	-0.173	(0.216)
village $=8$	0.109	(0.169)
village $=9$	-0.249^{\dagger}	(0.147)
village $=10$	$0.444^{* *}$	(0.161)
village $=11$	0.066	(0.145)
village $=12$	0.052	(0.188)
village $=13$	-0.073	(0.169)
village $=14$	-0.450^{\dagger}	(0.252)
village $=15$	0.213	(0.231)
village $=16$	-0.020	(0.143)
village $=17$	-0.150	(0.257)
village $=18$	0.228	(0.287)
village $=19$	0.476	(0.310)

Continued on next page...

Variable	Coefficient	(Std. Err.)
village $=20$	-0.043	(0.254)
village $=21$	0.081	(0.305)
migration $=1$	-0.147^{\dagger}	(0.078)
SES quintile $=2$	0.052	(0.129)
SES quintile $=3$	-0.176	(0.124)
SES quintile $=4$	-0.268*	(0.119)
SES quintile $=5$	-0.290*	(0.119)
Intercept	$2.327^{* *}$	(0.241)
Selection Equation: $[F]$		
age $=20$	-0.322**	(0.108)
age $=25$	-0.351**	(0.106)
age $=30$	-0.203^{\dagger}	(0.108)
age $=35$	0.000	(0.110)
age $=40$	-0.146	(0.116)
age $=45$	0.005	(0.120)
age $=50$	0.145	(0.149)
age $=55$	0.107	(0.147)
age $=60$	0.511**	(0.171)
age $=65$	$0.443^{* *}$	(0.167)
age $=70$	0.376*	(0.189)
age $=75$	0.578**	(0.221)
age $=80$	0.358^{\dagger}	(0.201)
sex $=1$	0.164	(0.126)
age $=20$ and $\operatorname{sex}=1$	-0.681**	(0.154)
age $=25$ and sex $=1$	$-0.835^{* *}$	(0.153)
age $=30$ and sex $=1$	-0.999**	(0.155)
age $=35$ and sex $=1$	$-0.971^{* *}$	(0.156)
age $=40$ and sex $=1$	-0.973**	(0.166)
age $=45$ and sex $=1$	-0.994**	(0.170)
age $=50$ and sex $=1$	-0.940**	(0.203)
age $=55$ and sex $=1$	-0.984**	(0.203)
age $=60$ and sex $=1$	-0.895**	(0.223)
age $=65$ and sex $=1$	-0.805**	(0.227)
age $=70$ and sex $=1$	$-0.678^{* *}$	(0.248)
age $=75$ and sex $=1$	-0.713*	(0.320)
age $=80$ and sex $=1$	0.081	(0.329)
village $=2$	-0.499**	(0.112)
village $=3$	-0.047	(0.098)
village $=4$	-0.028	(0.116)
village $=5$	-0.166	(0.114)
village $=6$	0.111	(0.115)
village $=7$	-0.168	(0.133)
village $=8$	-0.138	(0.099)
village $=9$	-0.301**	(0.101)
village $=10$	-0.129	(0.101)
village $=11$	-0.189*	(0.088)
village $=12$	-0.020	(0.137)
village $=13$	-0.188	(0.121)
village $=14$	-0.381*	(0.152)
Continued on next page...		

.. table 1 continued		
Variable	Coefficient	(Std. Err.)
village $=15$	0.049	(0.110)
village $=16$	0.117	(0.115)
village $=17$	-0.189	(0.141)
village $=18$	-0.286^{\dagger}	(0.169)
village $=19$	0.223	(0.180)
village $=20$	-0.049	(0.177)
village $=21$	-0.040	(0.154)
migration $=1$	$-0.173^{* *}$	(0.045)
SES quintile $=2$	0.043	(0.071)
SES quintile $=3$	0.039	(0.070)
SES quintile $=4$	0.044	(0.070)
SES quintile $=5$	-0.058	(0.070)
Intercept	$1.139^{* *}$	(0.122)
ρ	-0.215	(0.288)
Significance levels $:$	$\dagger: 10 \%$	$*: 5 \%$

Table 2. Model M2 Estimation Results

Variable	Coefficient	(Std. Err.)
Outcome Equation: [F:I:T]		
age $=20$	-0.503*	(0.230)
age $=25$	-0.803**	(0.221)
age $=30$	-0.605**	(0.226)
age $=35$	-0.662**	(0.225)
age $=40$	-0.694**	(0.236)
age $=45$	-0.406	(0.256)
age $=50$	-0.482^{\dagger}	(0.264)
age $=55$	-0.393	(0.269)
age $=60$	-0.581*	(0.254)
age $=65$	-0.754**	(0.246)
age $=70$	-0.485	(0.303)
age $=75$	-0.472	(0.327)
age $=80$	-0.416	(0.330)
sex $=1$	-0.323	(0.244)
age $=20$ and sex $=1$	0.095	(0.304)
age $=25$ and sex $=1$	-0.144	(0.296)
age $=30$ and sex $=1$	-0.341	(0.304)
age $=35$ and sex $=1$	-0.154	(0.296)
age $=40$ and sex $=1$	-0.130	(0.318)
age $=45$ and sex $=1$	-0.262	(0.323)
age $=50$ and sex $=1$	-0.289	(0.363)
age $=55$ and sex $=1$	0.119	(0.394)
age $=60$ and sex $=1$	0.199	(0.342)
age $=65$ and sex $=1$	0.899*	(0.420)
age $=70$ and sex $=1$	0.544	(0.420)
age $=75$ and sex $=1$	0.169	(0.470)
age $=80$ and sex $=1$	0.281	(0.484)
village $=2$	-0.202	(0.217)
village $=3$	-0.048	(0.168)
village $=4$	-0.377^{\dagger}	(0.196)
village $=5$	-0.056	(0.183)
village $=6$	-0.253	(0.184)
village $=7$	0.362	(0.225)
village $=8$	-0.018	(0.155)
village $=9$	-0.375*	(0.178)
village $=10$	0.224	(0.175)
village $=11$	0.100	(0.153)
village $=12$	0.593**	(0.226)
village $=13$	-0.089	(0.179)
village $=14$	0.476	(0.293)
village $=15$	0.165	(0.221)
village $=16$	-0.249	(0.175)
village $=17$	0.033	(0.245)
village $=18$	0.048	(0.267)
village $=19$	-0.008	(0.285)
village $=20$	0.151	(0.327)
village $=21$	0.106	(0.213)

Continued on next page...

Variable	Coefficient	(Std. Err.)
migration $=1$	-0.017	(0.083)
SES quintile $=2$	-0.036	(0.119)
SES quintile $=3$	-0.156	(0.119)
SES quintile $=4$	-0.414**	(0.118)
SES quintile $=5$	-0.494**	(0.117)
Intercept	$2.430^{* *}$	(0.274)
Selection Equation: [F:I]		
age $=20$	-0.201	(0.232)
age $=25$	-0.380^{\dagger}	(0.225)
age $=30$	-0.321	(0.218)
age $=35$	-0.527*	(0.213)
age $=40$	-0.569*	(0.224)
age $=45$	-0.589**	(0.222)
age $=50$	0.026	(0.302)
age $=55$	-0.367	(0.253)
age $=60$	-0.257	(0.261)
age $=65$	-0.326	(0.262)
age $=70$	-0.526^{\dagger}	(0.275)
age $=75$	-0.532^{\dagger}	(0.284)
age $=80$	-0.268	(0.320)
sex $=1$	-0.029	(0.249)
age $=20$ and $\operatorname{sex}=1$	-0.118	(0.318)
age $=25$ and sex $=1$	-0.524^{\dagger}	(0.300)
age $=30$ and sex $=1$	-0.707^{*}	(0.293)
age $=35$ and sex $=1$	-0.407	(0.287)
age $=40$ and $\operatorname{sex}=1$	-0.478	(0.307)
age $=45$ and sex $=1$	-0.253	(0.304)
age $=50$ and sex $=1$	-1.061**	(0.375)
age $=55$ and sex $=1$	-0.381	(0.360)
age $=60$ and sex $=1$	-0.264	(0.353)
age $=65$ and sex $=1$	-0.403	(0.352)
age $=70$ and sex $=1$	0.205	(0.398)
age $=75$ and sex $=1$	11.429	(0.000)
age $=80$ and sex $=1$	-0.368	(0.433)
village $=2$	-0.079	(0.177)
village $=3$	-0.003	(0.157)
village $=4$	-0.038	(0.188)
village $=5$	0.357^{\dagger}	(0.193)
village $=6$	-0.136	(0.182)
village $=7$	-0.188	(0.215)
village $=8$	0.103	(0.171)
village $=9$	-0.280*	(0.142)
village $=10$	0.442**	(0.162)
village $=11$	0.053	(0.144)
village $=12$	0.053	(0.190)
village $=13$	-0.088	(0.170)
village $=14$	-0.493*	(0.233)
village $=15$	0.224	(0.235)
village $=16$	-0.020	(0.144)

\ldots table 2 continued		
Variable	Coefficient	(Std. Err.)
village $=17$	-0.169	(0.262)
village $=18$	0.211	(0.290)
village $=19$	0.489	(0.308)
village $=20$	-0.045	(0.258)
village $=21$	0.088	(0.311)
migration $=1$	-0.162^{*}	(0.075)
SES quintile $=2$	0.058	(0.131)
SES quintile $=3$	-0.174	(0.125)
SES quintile $=4$	-0.272^{*}	(0.120)
SES quintile $=5$	-0.296^{*}	(0.119)
Intercept	$2.301^{* *}$	(0.241)
ρ	0.414	(0.230)
Significance levels $:$	$\dagger: 10 \%$	$*: 5 \%$
	$* *: 1 \%$	

Table 3. Model M3 Estimation Results

Variable	Coefficient	(Std. Err.)
Outcome Equation: [H]		
age $=20$	1.025**	(0.153)
age $=25$	$1.391^{* *}$	(0.152)
age $=30$	$1.422^{* *}$	(0.150)
age $=35$	$1.521^{* *}$	(0.149)
age $=40$	$1.257^{* *}$	(0.158)
age $=45$	$1.222^{* *}$	(0.159)
age $=50$	1.039**	(0.176)
age $=55$	1.018**	(0.175)
age $=60$	$0.567^{* *}$	(0.188)
age $=65$	0.447^{*}	(0.207)
age $=70$	0.388^{\dagger}	(0.219)
age $=75$	0.064	(0.254)
age $=80$	-0.614	(0.405)
sex $=1$	-0.991**	(0.334)
age $=20$ and sex $=1$	0.078	(0.362)
age $=25$ and sex $=1$	0.595^{\dagger}	(0.361)
age $=30$ and sex $=1$	$1.082^{* *}$	(0.351)
age $=35$ and sex $=1$	$1.073^{* *}$	(0.349)
age $=40$ and sex $=1$	$1.206^{* *}$	(0.361)
age $=45$ and sex $=1$	0.932*	(0.366)
age $=50$ and sex $=1$	$1.164^{* *}$	(0.383)
age $=55$ and sex $=1$	$1.237^{* *}$	(0.377)
age $=60$ and sex $=1$	$1.267^{* *}$	(0.383)
age $=65$ and sex $=1$	$1.187^{* *}$	(0.414)
age $=70$ and sex $=1$	0.686	(0.433)
age $=75$ and sex $=1$	0.973^{\dagger}	(0.515)
age $=80$ and sex $=1$	1.140^{\dagger}	(0.643)
village $=2$	0.178	(0.183)
village $=3$	0.114	(0.121)
village $=4$	-0.012	(0.152)
village $=5$	-0.114	(0.135)
village $=6$	0.056	(0.144)
village $=7$	-0.095	(0.155)
village $=8$	-0.082	(0.125)
village $=9$	-0.057	(0.131)
village $=10$	-0.217^{\dagger}	(0.121)
village $=11$	0.047	(0.113)
village $=12$	0.073	(0.157)
village $=13$	0.001	(0.141)
village $=14$	-0.025	(0.179)
village $=15$	0.034	(0.141)
village $=16$	-0.329*	(0.146)
village $=17$	0.129	(0.154)
village $=18$	0.226	(0.197)
village $=19$	0.195	(0.212)
village $=20$	-0.268	(0.217)
village $=21$	0.664**	(0.193)

Variable	Coefficient	(Std. Err.)
migration $=1$	-0.024	(0.058)
SES quintile $=2$	-0.160*	(0.081)
SES quintile $=3$	-0.070	(0.085)
SES quintile $=4$	-0.070	(0.098)
SES quintile $=5$	-0.351**	(0.110)
Intercept	-1.433**	(0.180)
Selection Equation: $[F: I: T]$		
age $=20$	-0.555*	(0.241)
age $=25$	-0.832**	(0.225)
age $=30$	-0.663**	(0.231)
age $=35$	-0.721**	(0.232)
age $=40$	-0.753**	(0.246)
age $=45$	-0.422	(0.257)
age $=50$	-0.569*	(0.270)
age $=55$	-0.456^{\dagger}	(0.276)
age $=60$	-0.658*	(0.261)
age $=65$	-0.817**	(0.254)
age $=70$	-0.567^{\dagger}	(0.313)
age $=75$	-0.536	(0.341)
age $=80$	-0.466	(0.335)
sex $=1$	-0.377	(0.251)
age $=20$ and sex $=1$	0.127	(0.313)
age $=25$ and sex $=1$	-0.031	(0.299)
age $=30$ and sex $=1$	-0.236	(0.309)
age $=35$ and sex $=1$	-0.027	(0.301)
age $=40$ and sex $=1$	0.002	(0.327)
age $=45$ and sex $=1$	-0.185	(0.332)
age $=50$ and sex $=1$	-0.122	(0.357)
age $=55$ and sex $=1$	0.223	(0.414)
age $=60$ and sex $=1$	0.264	(0.353)
age $=65$ and sex $=1$	0.976*	(0.442)
age $=70$ and sex $=1$	0.689	(0.434)
age $=75$ and sex $=1$	0.175	(0.482)
age $=80$ and sex $=1$	0.332	(0.502)
village $=2$	-0.081	(0.228)
village $=3$	-0.037	(0.173)
village $=4$	-0.403*	(0.199)
village $=5$	-0.076	(0.185)
village $=6$	-0.239	(0.191)
village $=7$	0.413^{\dagger}	(0.232)
village $=8$	-0.028	(0.159)
village $=9$	-0.358*	(0.182)
village $=10$	0.219	(0.179)
village $=11$	0.081	(0.161)
village $=12$	0.612**	(0.236)
village $=13$	-0.097	(0.183)
village $=14$	0.502^{\dagger}	(0.294)
village $=15$	0.153	(0.225)
village $=16$	-0.234	(0.178)
Continued on next page...		

Variable		
Cable 3 continued		$(0.012$
village $=17$	0.091	(0.286)
village $=18$	-0.039	(0.285)
village $=19$	0.179	(0.338)
village $=20$	0.123	(0.222)
village $=21$	0.015	(0.079)
migration $=1$	-0.008	(0.122)
SES quintile $=2$	-0.069	(0.121)
SES quintile $=3$	$-0.348^{* *}$	(0.124)
SES quintile $=4$	$-0.425^{* *}$	(0.118)
SES quintile $=5$	-0.123	(0.168)
fieldworker $=3713$	-0.239	(0.167)
fieldworker $=3858$	0.289	(0.227)
fieldworker $=4680$	0.118	(0.159)
fieldworker $=5681$	0.463^{*}	(0.180)
fieldworker $=6547$	0.019	(0.164)
fieldworker $=6761$	-0.286^{\dagger}	(0.156)
fieldworker $=6963$	-0.287	(0.191)
fieldworker $=7683$	-0.295^{\dagger}	(0.166)
fieldworker $=8875$	0.160	(0.165)
fieldworker $=9821$	$2.547^{* *}$	(0.299)
Intercept	-0.499	(0.359)
ρ	$*: 5 \%$	
Significance levels $:$	$\dagger: 10 \%$	$*: 5 \%$

Table 4. Consent Model Estimation Results

Variable	Coefficient	(Std. Err.)
Outcome Equation: [H]		
age $=20$	1.024**	(0.154)
age $=25$	1.388**	(0.155)
age $=30$	$1.423 * *$	(0.151)
age $=35$	1.534**	(0.150)
age $=40$	1.269**	(0.162)
age $=45$	1.249**	(0.160)
age $=50$	$1.031^{* *}$	(0.177)
age $=55$	1.028**	(0.175)
age $=60$	0.554**	(0.190)
age $=65$	0.429*	(0.213)
age $=70$	$0.396{ }^{\dagger}$	(0.226)
age $=75$	0.079	(0.264)
age $=80$	-0.622	(0.414)
sex $=1$	-1.027**	(0.351)
age $=20$ and sex $=1$	0.098	(0.376)
age $=25$ and sex $=1$	0.631^{\dagger}	(0.380)
age $=30$ and sex $=1$	1.139**	(0.371)
age $=35$ and sex $=1$	1.116**	(0.363)
age $=40$ and sex $=1$	1.270**	(0.376)
age $=45$ and sex $=1$	0.958*	(0.380)
age $=50$ and sex $=1$	$1.237^{* *}$	(0.404)
age $=55$ and sex $=1$	1.292**	(0.389)
age $=60$ and sex $=1$	1.319**	(0.395)
age $=65$ and sex $=1$	$1.288^{* *}$	(0.417)
age $=70$ and sex $=1$	0.720	(0.449)
age $=75$ and sex $=1$	0.949^{\dagger}	(0.534)
age $=80$ and sex $=1$	1.202^{\dagger}	(0.654)
village $=2$	0.172	(0.185)
village $=3$	0.114	(0.122)
village $=4$	-0.035	(0.154)
village $=5$	-0.136	(0.136)
village $=6$	0.049	(0.146)
village $=7$	-0.065	(0.152)
village $=8$	-0.091	(0.126)
village $=9$	-0.058	(0.142)
village $=10$	-0.231^{\dagger}	(0.129)
village $=11$	0.050	(0.115)
village $=12$	0.088	(0.158)
village $=13$	-0.002	(0.142)
village $=14$	0.040	(0.176)
village $=15$	0.029	(0.146)
village $=16$	-0.350*	(0.147)
village $=17$	0.141	(0.155)
village $=18$	0.218	(0.200)
village $=19$	0.180	(0.216)
village $=20$	-0.262	(0.217)
village $=21$	0.668**	(0.199)
	Continued	n next page...

Variable	Coefficient	(Std. Err.)
migration $=1$	-0.014	(0.059)
SES quintile $=2$	-0.164*	(0.082)
SES quintile $=3$	-0.066	(0.088)
SES quintile $=4$	-0.074	(0.112)
SES quintile $=5$	-0.359**	(0.131)
Intercept	-1.430**	(0.183)
Selection Equation: $[C T: C S]$		
age $=20$	-0.416*	(0.185)
age $=25$	-0.676**	(0.178)
age $=30$	-0.522**	(0.177)
age $=35$	-0.672**	(0.178)
age $=40$	-0.702**	(0.185)
age $=45$	-0.566**	(0.188)
age $=50$	-0.334	(0.220)
age $=55$	-0.428*	(0.209)
age $=60$	-0.505*	(0.207)
age $=65$	-0.669**	(0.204)
age $=70$	-0.585*	(0.231)
age $=75$	-0.574*	(0.244)
age $=80$	-0.403	(0.261)
sex $=1$	-0.241	(0.197)
age $=20$ and sex $=1$	0.027	(0.250)
age $=25$ and sex $=1$	-0.297	(0.240)
age $=30$ and sex $=1$	-0.540*	(0.239)
age $=35$ and sex $=1$	-0.235	(0.234)
age $=40$ and sex $=1$	-0.316	(0.252)
age $=45$ and sex $=1$	-0.210	(0.252)
age $=50$ and sex $=1$	-0.609*	(0.287)
age $=55$ and sex $=1$	-0.089	(0.304)
age $=60$ and sex $=1$	0.008	(0.278)
age $=65$ and sex $=1$	0.301	(0.292)
age $=70$ and sex $=1$	0.504	(0.327)
age $=75$ and sex $=1$	0.420	(0.405)
age $=80$ and sex $=1$	-0.010	(0.363)
village $=2$	-0.097	(0.168)
village $=3$	-0.014	(0.134)
village $=4$	-0.274^{\dagger}	(0.160)
village $=5$	0.116	(0.150)
village $=6$	-0.226	(0.152)
village $=7$	0.065	(0.187)
village $=8$	0.019	(0.134)
village $=9$	-0.361**	(0.133)
village $=10$	$0.357^{* *}$	(0.138)
village $=11$	0.074	(0.122)
village $=12$	0.276	(0.174)
village $=13$	-0.078	(0.143)
village $=14$	-0.188	(0.215)
village $=15$	0.210	(0.182)
village $=16$	-0.161	(0.135)

Vable 4 continued		
Variable	Coefficient	(Std. Err.)
village $=17$	-0.080	(0.215)
village $=18$	0.161	(0.237)
village $=19$	0.193	(0.238)
village $=20$	0.070	(0.235)
village $=21$	0.139	(0.231)
migration $=1$	-0.076	(0.063)
SES quintile $=2$	0.027	(0.102)
SES quintile $=3$	-0.147	(0.102)
SES quintile $=4$	$-0.359^{* *}$	(0.100)
SES quintile $=5$	$-0.435^{* *}$	(0.097)
fieldworker $=3713$	-0.201	(0.147)
fieldworker $=3858$	-0.266^{\dagger}	(0.146)
fieldworker $=4680$	0.008	(0.184)
fieldworker $=5681$	0.044	(0.136)
fieldworker $=6547$	-0.085	(0.158)
fieldworker $=6761$	$-0.385^{* *}$	(0.142)
fieldworker $=6963$	-0.207	(0.136)
fieldworker $=7683$	-0.306^{\dagger}	(0.161)
fieldworker $=8875$	-0.273^{\dagger}	(0.141)
fieldworker $=9821$	-0.108	(0.142)
Intercept	$2.295^{* *}$	(0.231)
ρ	-0.342	(0.436)
Significance levels $: ~$	$: 10 \%$	$*: 5 \%$
$* *: 1 \%$		

Table 5. Contact Model Estimation Results

Variable	Coefficient	(Std. Err.)
Outcome Equation: [H]		
age $=20$	$0.886^{* *}$	(0.137)
age $=25$	$1.198^{* *}$	(0.137)
age $=30$	$1.246^{* *}$	(0.135)
age $=35$	$1.386^{* *}$	(0.131)
age $=40$	$1.157^{* *}$	(0.140)
age $=45$	1.114**	(0.138)
age $=50$	$0.901^{* *}$	(0.156)
age $=55$	0.914**	(0.153)
age $=60$	0.583**	(0.158)
age $=65$	0.570**	(0.160)
age $=70$	0.511**	(0.181)
age $=75$	0.324	(0.198)
age $=80$	-0.098	(0.235)
sex $=1$	-0.179	(0.166)
age $=20$ and sex $=1$	-0.430*	(0.210)
age $=25$ and sex $=1$	0.031	(0.211)
age $=30$ and sex $=1$	0.368^{\dagger}	(0.215)
age $=35$ and sex $=1$	0.265	(0.210)
age $=40$ and sex $=1$	0.432^{\dagger}	(0.228)
age $=45$ and sex $=1$	0.196	(0.220)
age $=50$ and sex $=1$	0.532*	(0.246)
age $=55$ and sex $=1$	0.368	(0.246)
age $=60$ and sex $=1$	0.406^{\dagger}	(0.235)
age $=65$ and sex $=1$	0.285	(0.243)
age $=70$ and sex $=1$	-0.129	(0.275)
age $=75$ and sex $=1$	0.021	(0.342)
age $=80$ and $\operatorname{sex}=1$	0.483	(0.334)
village $=2$	0.167	(0.148)
village $=3$	0.124	(0.107)
village $=4$	0.125	(0.133)
village $=5$	-0.109	(0.116)
village $=6$	0.148	(0.128)
village $=7$	-0.047	(0.144)
village $=8$	-0.070	(0.108)
village $=9$	0.145	(0.112)
village $=10$	-0.281**	(0.105)
village $=11$	0.007	(0.098)
village $=12$	-0.013	(0.131)
village $=13$	0.046	(0.119)
village $=14$	0.118	(0.174)
village $=15$	0.003	(0.131)
village $=16$	-0.115	(0.119)
village $=17$	0.146	(0.143)
village $=18$	0.097	(0.171)
village $=19$	0.104	(0.181)
village $=20$	-0.184	(0.183)
village $=21$	0.521**	(0.176)
	Continued	next page...

Variable	Coefficient	(Std. Err.)
Intercept	-1.428**	(0.142)
Selection Equation: [$C T$]		
age $=20$	-0.301**	(0.108)
age $=25$	-0.353**	(0.107)
age $=30$	-0.257*	(0.108)
age $=35$	-0.031	(0.110)
age $=40$	-0.161	(0.116)
age $=45$	0.031	(0.121)
age $=50$	0.229	(0.152)
age $=55$	0.174	(0.149)
age $=60$	0.595**	(0.170)
age $=65$	0.498**	(0.173)
age $=70$	0.425*	(0.198)
age $=75$	0.642**	(0.223)
age $=80$	0.394*	(0.201)
sex $=1$	0.183	(0.127)
age $=20$ and sex $=1$	-0.672**	(0.155)
age $=25$ and sex $=1$	$-0.810^{* *}$	(0.154)
age $=30$ and sex $=1$	-0.934**	(0.155)
age $=35$ and sex $=1$	-0.932**	(0.156)
age $=40$ and sex $=1$	$-0.967^{* *}$	(0.166)
age $=45$ and sex $=1$	${ }^{-0.973 * *}$	(0.169)
age $=50$ and sex $=1$	$-1.008^{* *}$	(0.206)
age $=55$ and sex $=1$	-0.963**	(0.204)
age $=60$ and sex $=1$	$-0.937^{* *}$	(0.222)
age $=65$ and sex $=1$	$-0.796^{* *}$	(0.231)
age $=70$ and sex $=1$	$-0.702^{* *}$	(0.257)
age $=75$ and sex $=1$	-0.817*	(0.320)
age $=80$ and sex $=1$	0.078	(0.334)
fieldworker $=3713$	-1.049**	(0.162)
fieldworker $=3858$	-0.746**	(0.172)
fieldworker $=4680$	-1.541**	(0.169)
fieldworker $=5681$	-1.192**	(0.164)
fieldworker $=6547$	-1.301**	(0.163)
fieldworker $=6761$	-1.156**	(0.162)
fieldworker $=6963$	-1.141**	(0.163)
fieldworker $=7683$	-1.295**	(0.161)
fieldworker $=8875$	-1.118**	(0.161)
fieldworker $=9821$	-0.948**	(0.162)
Intercept	2.019**	(0.169)
ρ	0.219	(0.158)

