Figure S4. Chi-square quantile-quantile plots of squared Mahalanobis distances (from the origin) of families” FGLS residual vectors, graphed
separately by family size.
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Let g; denote the s; X 1 column vector of FGLS residuals (from the covariates-only regression) of family i. Let E; denote the s; X s; symmetric block of the estimated residual-
covariance matrix Z that corresponds to family i—basically, Z; is the matrix giving the estimated residual-covariance structure for a family of the same type and composition of
family i. Then, family i’s squared Mahalanobis distance from the origin is d? = €/ £ 1¢;. If families’ residual vectors are multivariate-normal, then variable d? is expected to be
distributed as chi-square, with df equal to family size s;. The number of points in each panel is provided in its y-axis label. It can be seen that the chi-square distribution is a
reasonably good approximation to the data, except for a few outliers.



