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Abstract

In this study we present evidence that anthropogenic stressors can reduce the resilience of age-structured populations.
Enhancement of disturbance in a model-based Daphnia population lead to a repression of chaotic population dynamics at
the same time increasing the degree of synchrony between the population’s age classes. Based on the theory of chaos-
mediated survival an increased risk of extinction was revealed for this population exposed to high concentrations of a
chemical stressor. The Lyapunov coefficient was supposed to be a useful indicator to detect disturbance thresholds leading
to alterations in population dynamics. One possible explanation could be a discrete change in attractor orientation due to
external disturbance. The statistical analysis of Lyapunov coefficient distribution is proposed as a methodology to test for
significant non-linear effects of general disturbance on populations. Although many new questions arose, this study forms a
theoretical basis for a dynamical definition of population recovery.
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Introduction

Recovery, resilience and disturbance
Ecosystems are increasingly affected by human activity.

Structural as well as chemical impacts threaten ecological

populations, communities, the connected ecosystem functions,

processes and services [1]. The questions how the constituents of

ecosystems react to those impairments and whether they can

recover are matter of many ecological research studies (e.g., [2],

[3], [4], [5], [6], [7], [8]).

The term recovery is often stressed in ecology and monitoring.

In its broadest sense recovery is defined as the recurrence of a

system to a preceding status after disturbance, often quantified as

the time to achieve this pre-disturbance status. Thereby the

concept of recovery is used to quantify how severely a system is

affected by a disturbance but also to assess whether a system is

enduringly negatively affected.

Recovery constitutes a part of the much debated concept of

ecological stability which is connected to various other ecological

aspects as resilience [9], [10]. Like for recovery different

definitions of the term resilience exist (e.g., [11], [12]). Engineering

resilience is defined as the time that a system takes to return to

equilibrium following perturbation [13], whereas ecological

resilience is defined as the amount of perturbation a system can

withstand before it moves into a different basin of attraction or

stability domain [14]. Often resilience is simply defined as the

capacity of the system to return to a given state after a disturbance

[15]. In this last case recovery and resilience are used synony-

mously (resilience = rate of recovery).

As resilience reflects the ability of a community or a population

to withstand and recover from disturbance it is assumed a

fundamental property of ecological systems and thus has been

proposed as an indicator of ecological health and integrity [16].

Within this context disturbance is broadly defined as any relatively

discrete event that disrupts ecosystem, community, or population

structure and changes resources, substrate availability or the

physical environment [17].

It is generally accepted that most species communities are

constantly exposed to natural disturbance resulting in changes of

community structure and life history characteristics of the

constituting species. From the idea that many of the environmental

parameters that determine resilience of populations and commu-

nities to natural disturbance may also influence the response to

chemical stressors [16] it can be concluded that exposure to

contaminants or other anthropogenic impacts alters the ability to

withstand and recover from natural disturbance via reduced

resilience.

Two different types of disturbance can be distinguished. On the

one hand pulse disturbance [18] results in prompt change in

species abundance within a community (e.g. forest fire or chemical

spill that reduces densities of certain species). Effects of pulse

disturbances are generally assumed to recede after some time so

that the system can return to its initial equilibrium state. On the

other hand press disturbance causes permanent change in species

abundance and often leads to the loss of some taxa and

establishment of an alternative community (e.g. increased

temperature associated with global climate change or continuous

input of toxic material into a system). Until the elimination of the
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stressor a community under continuous press disturbance is

generally not accepted to return to its original condition [16].

Dynamics of age-structured populations
The fact that age structure is an important feature of natural

populations has been deduced in many studies based on

population models [19], [20], [21]. Many animal species, like

crustaceans, have life-histories composed of a sequence of stages

within which their individuals’ characteristics are broadly similar

to those of other individuals in the same stage and markedly

different from those of individuals in other stages [22]. Within

these complex life-cycles the vital rates (rates of survival,

development, and reproduction) almost always depend on

individuals’ age, size, or development stage. It has become widely

recognized that this diversity can have a significant influence upon

dynamics at the population level and that in order to understand

the dynamics of most populations it is necessary to take this

diversity adequately into account [23], [24].

Such variation can be described with the help of time discrete

nonlinear age-structured population models (for examples see [25],

[26], [27], [28], [29], [30]) which have been widely studied in the

biomathematical literature [31] (e.g., [32], [33], [34], [35], [36],

[37], [38]). A large number of theoretical analyses and numerous

applications to ecological systems have proven the relevance of

age-structured population models (e.g. [22], [28], [31], [39], [40],

[41], [42], [43], [44], [45], [46]).

Even though these models are of simple structure it was shown

that they display all kinds of dynamical behaviour, like equilibria,

periodic cycles, and unpredictable chaotic dynamics [40], [47],

[48], [49], [50], [51], [52], [53], [54], [55]). The occurrence of this

complex dynamic behaviour is related to the fact that minor

changes in parameter or initial values can strikingly change the

dynamic behaviour of systems [31]. Model dynamics were found

to be very sensitive to changes in life-history parameters as well as

environmental perturbations [28]. In more general terms of system

dynamics it was shown that trends and fluctuations in populations

are determined by complex interactions between extrinsic forcing

and intrinsic dynamics [46].

Daphnia magna as model organism
Daphnia magna is a Crustacean in the order of Cladocera. In

terms of assessing the effects of human contaminants D. magna

exhibits an ideal test organism for this purpose as it constitutes a

central component in aquatic food web structure [56], [57], [58]

and is known to be sensitive to a multitude of xenobiotics

(organophosphates, heavy metals, organochlorines, pyrethroids

etc.) [59], [60], [61]. Due to its ease of culture and its clonal

method of reproduction [56], [62] it is commonly used as a model

organism in ecological risk assessment of pesticides, biocides, and

industrial chemicals [29].

Within a Daphnia population three age classes (roughly equal to

size classes) representing the different life stages can be

distinguished, defined by means of age and fertility: neonates (less

than 24 h old), juveniles (at least 24 hours old but non-mature),

and adults (mature). These age classes differ in terms of their

toxicological sensitivity in mortality, reproduction and develop-

mental time. Effects within the population structure due to

xenobiotics emerge from these age class specific sensitivities, e.g.

reproduction rate.

Such a daphnid population exhibits a simple example of an

ecological system with multi-stage interactions of age-classes an,

n = {1, 2, 3}. Due to its reduced dimensionality and the differential

interactions within it, the population comes close to the classical

example of a 3-dimensional dynamical system like the Lorenz

attractor. This suggests to analyse the effects of disturbance (effect

= altered intrinsic rate of natural increase) of this system in terms

of non-linear dynamics.

DCA as a model substance
3,4-Dichloroaniline (DCA, CAS-Nr.: 95-76-1, EEC-Nr.: 202-

448-4) is an intermediate used for the synthesis of plant protection

products (e.g., linuron, diuron, propanil) and as an azo dye for

polyester fabrics. Release into the environment mainly occurs

during use of plant protection agents after biotransformation or

simply as an impurity of these substances [63]. DCA is known to

affect survival and reproduction in D. magna already in low

concentrations, resulting in reduced offspring number and

increased number of aborted eggs in chronic toxicity tests [64],

[65], [66]. In higher concentrations DCA has a lethal effect,

causing increased mortality rates in acute toxicity tests [67]. Thus

a strong effect of DCA on Daphnia population dynamics is obvious

[68] and it exhibits a useful model substance to investigate effects

on population level.

Non-linear time series analysis
The autocorrelation function allows for determining the non-

whiteness of data and detecting periodic components in data.

Because the autocorrelation function and the power spectrum are

related by the Fourier transform, they are mathematically

equivalent, and contain the same information [69].

Based on Takens’ theorem [70] time-delay embedding allows

for the reconstruction of the system’s phase space and its attractors

[71], [72], [73]. Scalar observations x(n) and their time delays x(n

+ kT); k = 1,2,…,m21 are used to make m-dimensional vectors

y(n) = [x(n),x(n+T),…,x(n+(m21)T) whose components provide a

coordinate system in which one can identify the attractor structure

associated with the observations (T = time delay)[74].

Recurrence plots are a graphical tool for measuring the time

constancy of dynamical systems [75]. They represent the

recurrence of the phase space trajectory to a certain state, which

is a fundamental property of deterministic dynamical systems [76],

[77]. The analysis of recurrence plots allows for the detection of

periodicity and regression [75] as well as typical transitions, e.g.,

bifurcation points occurring in complex systems [78].

A Poincaré section (also called a surface of section, Poincaré

map or first recurrence map) [79] creates a projection of

intersection points of an attractor and a hyper-plane in phase

space [77]. It differs from a recurrence plot in that space, not time,

determines the plot points. The hyper-plane is adjusted to cut the

attractor transversal, thereby depicting the orientation of the n-

dimensional attractor as a cloud of points in (n-1)-dimensional

space.

Lyapunov exponents (l) are a measure for exponential

divergence of initially nearby trajectories in embedded phase

space and are thus a hint for chaotic dynamics within a dynamical

system [80]. If a dynamical system exhibits at least one Lyapunov

exponent larger than zero it is assumed to show sensitivity to initial

conditions, a prerequisite for chaotic dynamics [81], [82].

Calculating maximal global Lyapunov coefficients instead of local

coefficients has the advantage of averaging out local divergence

rates [83].

Aims
In this paper the authors present an analysis of the dynamics of

a model-based age-class structured population of Daphnia magna

exposed to different concentrations of a chemical stressor (3,4-

Dichloroaniline, DCA). To support the understanding of the

effects of chemical disturbance the study focused on the non-linear
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characteristics of these dynamics and the question whether there is

evidence that disturbance may lead to non-reversible alterations of

population dynamics. This was achieved by quantification of

periodic and chaotic parts of population dynamics, using methods

from non-linear analysis and concepts from dynamical systems

theory.

The hypothesis to be tested in this study was that anthropogenic

stressors can alter the resilience of an age-structured population

and thus have a negative influence on the ability to respond to

further natural disturbance, thereby enhancing the risk of

population extinction.

The Lyapunov was tested as an indicator to detect disturbance

thresholds leading to a discrete change in the investigated

population dynamics. Interpreting the results in terms of resilience,

the study was intended to contribute to a dynamical definition of

population recovery.

Materials and Methods

Model-based study
In principle there are three ways to reconstruct dynamics from

non-linear systems: (1) analysis of system equations, (2) analysis of

empirical data and (3) analysis of model-based data. In stress

ecology simulation models are often used to predict recovery time

[5], [29], [30], [84], [85], [86], [87], [88].

Analysis of system equations is more a theoretical task and not

applicable in this context. Analysis of empirical data is often not

optimal in the case at hand as the time series available is too short

to analyze non-linear dynamics sufficiently and detect chaotic

dynamics. Additionally empirical data are noisy and to find

deterministic chaos the deterministic skeleton must be extracted

from the data (which requires long data series as well). Thus, in

this study we used a validated Daphnia population model (details

see below) to simulate the empirical data. By this means we were

able to (1) extend the observational time frame, as the model is

validated to predict Daphnia population dynamics, (2) extract the

deterministic skeleton, eliminating the confounding noise (we do

this by setting chance constant) and (3) take into account the

diversity within the complex life-cycle to understand the dynamics

of Daphnia magna [23], [24].

Simulated data sets
The time discrete data used in this study were generated by use

of an individual based population model for Daphnia magna

(IDamP, [29]). The model predicts the population dynamics

based on individual life cycles which include feeding rate, growth,

development, reproduction and survival processes for which food

conditions and population density (crowding effects) are the main

drivers. The life cycle process is represented as descriptive

regression models, based on a large dataset from D. magna life

cycle tests.

IDamP reliably predicts population growth and reproduction

for D. magna under laboratory conditions using the algae

Desmodesmus subspicatus as a food source. It was recently shown to

be able to extrapolate the individual effects of DCA to the

population level as well as for other toxicants [30], [89], [90].

Besides mortality the only sub-lethal effects for DCA considered in

the model is the inhibition of reproduction. The interactions

between individuals are due to crowding and competition for food.

To reduce the model stochasticity all individual properties, except

a maximum lifetime assigned randomly to the initial individuals

and the daphnids born during the simulation, were switched off.

This maximum lifetime value was not changed anymore during

the simulation. Raw data from the simulations can be obtained

from the authors on individual request.

Five concentration levels for DCA were used in the simulations

(0 mg/l, 2 mg/l, 5 mg/l, 10 mg/l, 20 mg/l, 40 mg/l), held constant

over the simulation time frame of 365 days thus representing a

press disturbance. Based on experimental laboratory data

concentration-response relationships for DCA on the individual

level had been calibrated in an integrated toxicity module in the

IDamP model and validated on population level before [30].

As the DCA concentrations are far below the acute mortality

concentrations for daphnids (48 h LC50: 0.23 mg/l [63], [67]), it

can be assumed that the effect will mainly occur on the adult

daphnid reproduction rate.

A Monte-Carlo set of 100 simulation runs was conducted using

the same parameter set as published in [30]. Differences in the 100

simulation runs resulted from differences in initial conditions.

Before starting the simulations 5 neonate and 3 adult daphnids

were introduced into the system. These 8 individuals were assigned

random but fixed values for maximum lifetime.

As the chaotic parts of the population dynamics would be lost in

non-linear analysis when based on mean values from these

simulation runs, non-linear dynamical characteristics were calcu-

lated for each simulation run separately. Statistics were subse-

quently calculated from the resulting distributions of non-linear

characteristics.

The overall population predicted by the model was additionally

divided into three age classes (size classes): neonates (,1.4 mm),

juveniles ($1.4 mm and ,2.6 mm) and adults ($2.6 mm). In this

way the data structure allowed for statistical analysis of population

age class dynamics.

Modelling non-linear dynamics
Data analysis was based on the time series data described above.

To exclude the effects from transient dynamics, the first 50 data

points were omitted from all analyses. First, 3-dimensional phase

space was plotted from the raw data of neonate, juvenile and adult

daphnids. Secondly, exploratory analysis was performed on the

time series data by use of linear autocorrelation functions. Finally,

after embedding the time series, non-linear analysis was applied by

means of recurrence plots, Poincaré sections and global maximum

Lyapunov exponents. Data visualisation and analysis was

performed by use of the software package Tisean [83], [91] in

MATLAB (Ver. 8.2.0.701, release R2013b) on a Linux-based

system (Debian testing Jessie). The MATLAB source code S1 is

accessible from the supporting information.

In a 3-dimensional plot neonate, juvenile, and adult Daphnia

abundances were plotted for each DCA-concentration. Trajecto-

ries were assessed in terms of compactness and orientation in

phase space. Autocorrelation analysis was performed with function

corr from the Tisean package to assess the amount of linear

structures within the data. To find the best unfolding of the time

series in the reconstructed phase space a series of time-delay

embeddings was performed by means of the function delay from

the Tisean package and the optimal parameters were chosen.

Based on this assessment, finally all subsequent analyses were

conducted with embedding dimension m = 2 and delay d = 1

(except the Poincaré section, which was performed with m = 3).

Recurrence analysis [78] was performed to quantify the number

and duration of recurrences of the system in its state space. We

used the function recurr from the Tisean package, using m = 2 as

embedding dimension, d = 1 as delay and = 1 as neighbourhood.

Poincaré sections were created with the function poincare from the

Tisean package applying an embedding dimension m = 3 and

delay d = 1 to find a geometric depiction of the trajectories in a

Chaotic Dynamics in Daphnia Populations
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lower-dimensional space. Quantification of attractor characteris-

tics was done by calculation of global Lyapunov exponents.

Maximum global Lyapunov coefficients for all 100 simulation runs

per age class and concentration level were calculated with the

function lyap k from the Tisean package [80], [81] using an

embedding dimension m = 2 and delay d = 1, revealing a

distribution of Lyapunov coefficients. Values larger than 1 were

assumed to be a strong evidence for chaotic dynamics within the

time series.

Statistical analysis
From the distributions of 100 Lyapunov coefficients mean

values and standard deviations per age class and treatment level

were calculated and tested for significant differences by means of a

Wilcoxon signed-rank test (function wilcoxon.test in R, two.sided,

conf.level = 0.95, [92]).

Results

All results are described for the overall population as well as the

age classes (neonates, juveniles and adults). Figures are only shown

for the overall population. The according figures for the age classes

can be found in the supporting information.

The mean Daphnia abundance from all 100 simulation runs

(including the 95% confidence interval) for the overall population

in the control treatment is exemplarily shown as time series data in

Fig. 1 (abundances for neonates, juveniles and adults can be found

in the supporting information, Fig. S1). It was assumed that the

population and its age classes existed under equilibrium conditions

under control conditions from t = 50 on.

Population dynamics were quite comparable for control and

DCA concentrations lower than 40 mg/l (Fig. 2). For the highest

DCA concentration level the dynamics were obviously different.

In general the autocorrelation functions (Fig. 3) showed that

with increasing DCA concentration no significant change in

structure occurred. Comparable periodic dynamics of fluctuating

correlation coefficients were observed up to 20 mg/l. This effect

was especially strong for juveniles and adults, while in the neonate

age class the effect was clearly less pronounced (see Fig. S2 in

supporting information). In contrast the autocorrelation function

for 40 mg/l showed a very strong correlation structure with clearly

increased amplitude and decreased frequency.

From time-delay embedding (Fig. 4) it was concluded, that the

trajectories for the overall population settled in the middle of the

phase space. Especially for neonates and juveniles (see Fig. S3 in

supporting information) the trajectories settled within a small part

of the phase space nearer to the origin for the highest DCA

concentration (40 mg/l).

Increased pattern formation was observed with increasing DCA

concentrations in the recurrence plots (Fig. 5), especially for

40 mg/l. This was also observed for the age classes (see Fig. S4 in

supporting information). For neonates a very strong lineal pattern

Figure 1. Daphnia abundance from all 100 simulation runs for the overall population in control. Solid line: mean abundance, dashed
line: 95% confidence interval.
doi:10.1371/journal.pone.0096270.g001
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Figure 2. 3-dimensional phase spaces from raw data of simulation run 1 for neonates, juveniles and adults. From top left to bottom
right, row-wise: control, 2 mg/l, 5 mg/l, 10 mg/l, 20 mg/l, 40 mg/l.
doi:10.1371/journal.pone.0096270.g002

Figure 3. Autocorrelation functions of simulation run 1 for the overall population. From top to bottom: control, 2 mg/l, 5 mg/l, 10 mg/l,
20 mg/l, 40 mg/l, resp.
doi:10.1371/journal.pone.0096270.g003
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occurred in the highest concentration level, while for juveniles and

adults this pattern formation was less pronounced. Especially for

juveniles additional circular structures were observed in the

highest concentration level.

Poincaré sections did not show large differences in dynamics for

treatments from control up to 20 mg/l (Fig. 6). For 40 mg/l the

attractor orientation in phase space abruptly changed in location

(shift towards origin) and cross sectional area decreased. This effect

was especially pronounced for juveniles and adults (see Fig. S5 in

supporting information). For neonates the attractor was always

located near the phase space origin.

Table 1 shows mean values and standard deviations for

maximum Lyapunov coefficients calculated from the Lyapunov

distribution for the overall population in the treatment levels. All

maximum Lyapunov coefficients for all treatment levels were

larger than zero (Fig. 7). Lyapunov coefficients of DCA treatments

up to 20 mg/l were only slightly smaller than for control, while for

40 mg/l a large decrease was observed.

Table 2 shows the results from the Wilcoxon signed-rank tests

on statistical differences between mean maximum Lyapunov

coefficients for all treatment levels. The mean maximum

Lyapunov coefficients for 40 mg/l were significantly different from

all other treatment levels. Also, all mean maximum coefficients for

the treatment levels were significantly different from the control.

Discussion

From the time series data in Fig. 1 it was concluded that under

control conditions (no disturbance) the population and its age

classes existed under equilibrium conditions. The existence of

equilibrium is prerequisite in the attempt to define recovery

because only if population structure is relatively stable, the

population can return to defined pre-disturbance conditions if

given sufficient time following the disturbance [16].

Generally the system seemed to converge to a quasi-stable state

in the long run (see Fig. 2). For concentrations lower than 40 mg/l

the system seemed to settle in a relatively small phase space region.

This region occurred well bounded (a prerequisite for chaos), but

the trajectory seemed to follow a complex attractor, exhibiting

considerable population fluctuations. For the highest DCA

concentration level fluctuations were much smaller compared to

lower DCA concentrations. The trajectory settled within a much

smaller phase space region, nearly approaching the zero abun-

dance level, especially for the adult age class. These dynamics

clearly exhibited an increased extinction risk for the overall

population if this effect would have lasted too long (although this

does not pose a problem to the age-class itself in the first place, as

the classes are refilled by aging individuals).

For the overall population (as well as for all age classes) in the

control and all treatment levels a sinusoid like oscillation was

observed (see Fig. 3). Whether unpredictability results from a

random process or is based on non-linear effects (deterministic

Figure 4. Embedded time series of simulation run 1 for the overall population. From top left to bottom right, row-wise: control, 2 mg/l,
5 mg/l, 10 mg/l, 20 mg/l, 40 mg/l, resp. (d = 1, m = 2).
doi:10.1371/journal.pone.0096270.g004
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chaos) can not be assessed by linear autocorrelation analysis as it is

unable to distinguish between these two sources of fluctuation.

However, since individual properties, except random individual

maximum lifetime, were switched of to reduce the stochasticity of

the model it is fare assumption that the unpredictability resulted

exclusively from the non-linear effects.

For the highest concentration level the amplitude of the periodic

oscillations clearly increased while the frequency decreased. This

argues for an increased formation of long-range correlations

within the data [93] for high concentration levels, enhancing the

long-term predictability. It was thus concluded that the linear

predictability of system dynamics increased with increasing

disturbance.

As already observed for the raw data phase space, the system

was forced towards an asymptotically stable equilibrium point for

all DCA concentrations in embedded phase space (see Fig. 4). The

fluctuations within the trajectory’s settlement area decreased for

the overall population and especially for the juvenile daphnids for

the highest concentration level, reflecting the population’s

decreasing ability to respond to changes in environmental

conditions (decreasing resilience).

Additionally, as the equilibrium point moved towards the phase

space origin with increasing DCA concentration, the risk of

extinction also increased.

The generally increasing pattern formation in the recurrence

plots revealed, that the system dynamics increasingly tended to

return to formerly engaged states when the disturbance increased

(see Fig. 5).

While the more uniform spreading of points in the lower

concentration levels suggested a high portion of chaotic dynamics

(especially for the neonate daphnids), the lineal pattern found for

in the highest concentration level suggested a high amount of

periodic dynamics within the time series [94]. In contrast, the

circular structures observed for juveniles in the highest concen-

tration level suggested the occurrence of quasi-periodic dynamics,

like superimposed harmonic oscillations. These structures can be

suspected to originate from the realistic and model-built in time

delay between juvenile response, their maturation and the

according effects on reproduction.

For the juvenile daphnids a mixture-like pattern was observed in

the highest concentration level. It seems like the system settled at a

transition between quasi-periodic and periodic dynamics. Such a

transition has already been observed in a population model for

Tribolium [95], in which the varied parameter of disturbance was

the rate of larvae developing to adults, resembling the effect on age

class dependent mortality of juveniles within the Daphnia model. As

already deduced from the autocorrelation function, from our

findings it was concluded, that the predictability of the system

dynamics increased with increasing disturbance.

Figure 5. Recurrence plot of simulation run 1 for the overall population. From top left to bottom right, row-wise: control, 2 mg/l, 5 mg/l,
10 mg/l, 20 mg/l, 40 mg/l, resp. (d = 1, m = 1,2, e= 1).
doi:10.1371/journal.pone.0096270.g005
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Figure 6. Poincaré sections of simulation run 1 for the overall population. From top left to bottom right, row-wise: control, 2 mg/l, 5 mg/l,
10 mg/l, 20 mg/l, 40 mg/l, resp. (d = 1, m = 3, C = 1).
doi:10.1371/journal.pone.0096270.g006

Figure 7. Boxplots for maximum Lyapunov coefficients for DCA treatments for the overall population. Boxes show mean value
(horizontal line), 25 and 75% quantile (box edges), 5 and 95% quantile (whiskers) and outliers.2 sd from mean (circles).
doi:10.1371/journal.pone.0096270.g007
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The Poincaré sections illustrated clearly, that the attractor

determining the system dynamics was more or less stable from the

control up to 20 mg/l DCA in the overall population as well as all

age classes (see Figs. 6 and S5). The abruptly changing location of

the attractor (esp. for juveniles) suggested that the attractor became

unstable between 20 mg/l and 40 mg/l.

As all Lyapunov coefficients (5 treatment levels 63 age classes

6100 simulation runs = 1500 values) were larger than zero, and

together with the fact that the dynamics were clearly bounded,

there was strong evidence for chaotic dynamics within this model-

based population of Daphnia magna. Consulting the Lyapunov

coefficient as a measure of rate of chaotic dynamics within the

population development, this rate decreased for DCA treatments

compared to control (see Fig. 7). From the biological point of view

this seems reasonable as positive feedback (influence of exponential

growth) is likely to be smaller in the presence of a disturbance

affecting reproduction.

The decrease of the coefficients indicated that higher amounts

of disturbance decreased the potential for exponential increase of

trajectory distances. This was already obvious from the former

analyses, but the statistics on the coefficients quantified and

validated this. It suggested some sort of concentration-response

relationship, thereby approving the Lyapunov coefficient as an

indicator to detect non-linear effects of population dynamic

disturbance due to environmental stress. Additionally, the

significant decrease of the Lyapunov coefficient revealed a true

and important emergent effect which could not have been

expected from the raw population abundance pattern.

Conclusions

Implications
The decreasing Lyapunov coefficients with increasing DCA

concentration levels resembled a concentration-response relation-

ship. This is an important finding as it is directly connected to the

important species trait of reproductive capacity that strongly

triggers the daphnids’ population resilience (see discussion below).

Unfortunately it is not straightforward to quantify the effect as the

Lyapunov coefficient and the treatment level exhibit a reciprocal

relationship. Furthermore, the upper effect bound is difficult to

define, because Lyapunov coefficients approaching zero or values

below zero mean a discrete change in system dynamics (phase

transition towards a limit cycle or a stable equilibrium point

respectively), not a steady change as required for a continuous

concentration-response relationship. Thus the concentration-

response relationship would exhibit discontinuities, difficult to

interpret. In addition, Poincaré sections suggested that between

20 mg/l and 40 mg/l the attractor became unstable and a distinct

transition to another attractor (basin of attraction) occurred. This

would mean an extra discontinuity within the system’s reaction to

the increased treatment, which is a further clear contradiction to

the concept of concentration-response relationships.

Nevertheless, a no-effect threshold value can easily be inferred

from the distribution of Lyapunov coefficients. A simple test on

significant differences between the mean values of controls and

treatment levels (see Tab. 1) can be conducted. In the present

study this threshold turned out to be smaller than 2.5 mg/l for all

three age classes as well as the overall population (see Tab. 2).

Such a threshold could serve as a relevant indicator to assess non-

linear effects in population time-series data.

The population dynamics can generally be decomposed into a

deterministic (periodic plus chaotic) and a stochastic part, the latter

not being considered in this study. The authors are well aware

about the diverse discussion about the problem how to distinguish

stochastic fluctuations from chaotic dynamics (e.g. [96], [97], [98],

[99], [100], [101]). To reduce sensitivity on stochastic fluctuations

we used the function lyap k from the Tisean package which is

said to suppress statistical fluctuations by excluding reference

points which have no more than nfmin (default = 10) neighbours

closer than e [83].

The control level was found to exhibit a larger amount of

chaotic dynamics than the treatments. Nevertheless, this does not

mean that the controls were not predictable and thus not suitable

for assessment. The dynamics produced by the IDAMP-model

appeared clearly bounded and represented the naturally occurring

Table 1. Mean values and standard deviations for maximum Lyapunov coefficients per treatment level for the overall population
with n = 100.

Control 2.5 mg/l 5 mg/l 10 mg/l 20 mg/l 40 mg/l

mean 0.503 0.477 0.470 0.467 0.459 0.261

stdev 0.0471 0.0492 0.0485 0.0528 0.0507 0.0336

doi:10.1371/journal.pone.0096270.t001

Table 2. p-values from Wilcoxon signed-rank tests on statistical differences between mean maximum Lyapunov coefficients per
treatment level for the overall population.

2.5 mg/l 5 mg/l 10 mg/l 20 mg/l 40 mg/l

Control 4.853E-4 * 3.489E-6 * 1.137E-6 * 2.267E-9 * { *

2.5 mg/l 0.2401 0.1183 6.919E-3 * { *

5 mg/l 0.5842 0.09201 { *

10 mg/l 0.316 { *

20 mg/l { *

{: p,2.2e 2 16, significant differences with p,0.05 are marked by an asterisk.
doi:10.1371/journal.pone.0096270.t002
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fluctuations within an ecologically stable population correctly, esp.

under undisturbed conditions [30].

Natural populations as well as theoretical populations from

ecosystem models are known to exist in a mixture of deterministic

(periodical, ordered) and chaotic (irregular) dynamics [102], [103].

In our study it was shown that the ratio between the two

deterministic parts of population dynamics (periodic vs. chaotic)

increased with increasing disturbance resulting in the hypothesis

that the capability for resilience decreased with increasing

disturbance. As can be seen from Figs. 4 and 6 the dynamics

are clearly bounded and the population got more and more

trapped within a very small phase space region. From these

findings it can be supposed that the population’s flexibility to react

to further external disturbance was reduced.

As can be concluded from the Poincaré maps used in this study,

the DCA treatment seemed to destabilize the attractor above

20 mg DCA/l. Consulting the definition of ecological resilience, it

can be assumed that this effect was caused by altering the phase

space stability landscape, in the way that the system settled within

a new basin of attraction. The fact that the system attractor

became unstable could mean more than the gradually changing

ratio of chaotic and periodic dynamics with increasing disturbance

(see autocorrelation function and recurrence plot). It means a

discrete, qualitative change in system dynamics (phase transition),

which can be attributed to a shift in demographic parameters (like

survival or fecundity) and has already been reported before for

insect populations [104].

But, generally it is assumed that a press disturbance causes

sustained alterations within a system’s dynamics. A system under

press disturbance is generally not expected to return to an initial

configuration [16]. At least for the highest treatment tested it was

supposed that there was an increased chance, that the system

would not be able to return to the dynamics typical for less

disturbed conditions simply by virtue of its own strength when the

disturbance was removed. Instead it would need a further

‘disturbance’ to force the system back to the attractor which was

observed for up to 20 mg/l due to the altered stability landscape.

Recovery in this context would mean a reconfiguration of the

stability landscape to a state typical for less disturbed systems. The

problem about this definition within the experimental context is

that for treatment levels up to 20 mg/l no change of the stability

landscape was visible at all, whereas for 40 mg/l a change was

found indeed. As a reconfiguration step (switching off the press

disturbance) was not included within the experimental design, it

was only possible to observe the potential for recovery, not an

actual recovery event within the populations. But, from the

findings in this study it was concluded that the chance for a change

in attractor orientation increased with increasing treatment level.

Outlook
The study revealed that recovery and resilience in age-class

structured populations exposed to environmental stress are

complex matters and have to be assessed rather deeply to come

to relevant conclusions.

Chaos was observed besides periodicity in the model-based age-

structured Daphnia population. This was reported before for

different models, populations under laboratory conditions and

even for multi-species communities under laboratory and semi

field conditions (e.g., [38], [95], [104], [105], [106], [107]). Our

study connects this fact to the idea of a dynamical definition of

recovery. In this study the amount of chaotic dynamics turned out

to be the largest in the undisturbed control treatments, pointing

out the importance of the natural mechanism of population

stabilization via fluctuation in terms of resilience, defined as the

flexibility to changes in environmental conditions (dynamical

plasticity). The unpredictable part of population dynamics in the

control treatments showed that the specification of recovery in

terms of the return to the undisturbed control state maybe a

questionable definition, as the theory behind the recovery concept

is usually a static, not a dynamical one. Using Lyapunov

coefficients as indicators it was shown that a disturbance reduces

the amount of chaoticity or non-linear dynamics within the

population. In our opinion this effect gives strong evidence that

anthropogenic stressors can reduce the resilience of age-structured

population and foster linear dynamics and resulting periodicity,

reflecting equilibrium conditions.

Reduced resilience has a negative influence on populations’

ability to respond to further disturbances and makes them more

susceptible to extinction due to climatic changes, for example. This

is an increasingly important aspect in ecological research which

has been reported for many systems and their population, some of

them highly endangered (e.g., [108], [109]).

These results stand in contrast to some other studies which

instead suggest the increase of chaos and according decrease of

stability in populations exposed to environmental stress [110]. But,

in this study the constant press disturbance in combination with

the discrete reproduction cycle of the daphnids results in a

situation comparable to a periodic forcing which has already been

shown to result in phase transitions in the dynamics of time

discrete non-linear ecosystem models, either from periodic

behaviour to chaos [111] or from chaotic dynamics to periodicity,

the latter resulting in a chaos control mechanism [112].

The study at hand supports the hypothesis that chaotic

oscillations reduce the degree of synchrony among populations

or subdivisions of populations (decorrelation effect), thereby

stabilizing the system and reducing the probability of extinction

(chaos-mediated survival), an interpretation already been pub-

lished for meta-populations before [113]. Thus, we think that our

findings add an important aspect to the open discussion about

resilience and chaotic population dynamics in the presence of

environmental disturbance, which is still an exciting area of

research [114].

The quantitative change in system dynamics and the two

constituting components can effectively be visualised by linear

methods (autocorrelation analysis) and non-linear techniques

(recurrence plot, Poincaré section, Lyapunov exponents). Lyapu-

nov coefficient proved to be a useful indicator to detect

disturbance thresholds quantifying non-linear effects of contami-

nants within the Daphnia population. Even a concentration-

response like relationship was observed for Lyapunov coefficients

in this study. The modelling of non-linear effects is thus regarded

as important by the authors, as non-linearities in species

populations cannot be predicted by linear techniques in the long

run.

The authors propose their methodology as a way to test for

statistically significant non-linear effects of general disturbance on

dynamics in long-term population data sets, especially when

assessing the risk that a disturbance (like introducing chemicals in

ecosystems) persistently alters the dynamics. It allows assessing an

important emergent ecological effect on the population level which

cannot be retrieved by standard assessment methods, neither

based on individual endpoints like filtration rates nor based on

population endpoints like growth rates.

The aim of this study was not to propose alternative definitions

for the terms stability or recovery, nor to discuss the appearance of

non-linear dynamics in population models. To come to a time

explicit statement about recovery, like in the approach of

engineering resilience, a larger number of simulation studies have

Chaotic Dynamics in Daphnia Populations
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to be conducted, so that a mathematical probability can be

computed for the fact whether a population dynamic time series

returns to the control dynamics after a given time.

Further studies will be done in the future to find a suitable

statistical representation for a recovery statement, elucidate the

questions about a lasting altered fitness landscape induced by

disturbance, calculate mathematical probabilities for this and use

finer increments in the disturbance concentration levels to detect a

possible point of attractor instability more precisely.

Supporting Information

Figure S1 Daphnia abundance from all 100 simulation
runs. Solid line: mean abundance, dashed line: 95% confidence

interval. Top panel: neonates, mid panel: juveniles, bottom panel:

adults.

(TIFF)

Figure S2 Autocorrelation function of simulation run 1.
From top to bottom: control, 2 mg/l, 5 mg/l, 10 mg/l, 20 mg/l,

40 mg/l, resp. Top panel: neonates, mid panel: juveniles, bottom

panel: adults.

(TIFF)

Figure S3 Embedded time series of simulation run 1.
From top left to bottom right: control, 2 mg/l, 5 mg/l, 10 mg/l,

20 mg/l, 40 mg/l, resp. (d = 1, m = 2). Top panel: neonates, mid

panel: juveniles, bottom panel: adults.

(TIFF)

Figure S4 Recurrence plot of simulation run 1. From top

left to bottom right, row-wise: control, 2 mg/l, 5 mg/l, 10 mg/l,

20 mg/l, 40 mg/l, resp. (d = 1, m = 1,2, e= 1). Top panel: neonates,

mid panel: juveniles, bottom panel: adults).

(TIFF)

Figure S5 Poincaré sections of simulation run 1. From

top left to bottom right, row-wise: control, 2 mg/l, 5 mg/l, 10 mg/l,

20 mg/l, 40 mg/l, resp. (d = 1, m = 3, C = 1). Top panel: neonates,

mid panel: juveniles, bottom panel: adults.

(TIFF)

MATLAB source code S1 Non-linear time series analysis using

the Tisean package.

(DOC)
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