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1 Feature Representation in EFC

A key aspect of EFC’s ability to construct relevant complex features is its use of functional primitives
(operators) as building blocks.

Compositional Features The purpose of the Matches operator is to record the presence of a specific
motif. Its arguments are a the symbols making up a particular motif and the length of the motif. As
such, the Matches operator naturally allows encoding global compositional features. An illustration is
provided in Supplementary Figure S1, where the showcased feature tree encodes the presence of the motif
’ACC’ in a DNA sequence.

Positional Features In order to record the specific position in a sequence where a motif occurs and
thus encode local positional features, a second operator, MatchesAtPosition, is employed. Its arguments
are a compositional feature and a position. The compositional feature is encoded as above, through the
use of the Matches operator. An illustration is provided in Supplementary Figure S2.

Positional-Shift Features The MatchesAtPositionwithShift operator allows constructing addi-
tional local positional features that may be displaced in either direction by a small shift. The shift
can be provided as a parameter. Positional-shift features were discovered to be very effective in complex
sequence/series classification problems such as splice site detection [1]. An example is provided in Sup-
plementary Figure S3. The left subtree to the MatchesAtPositionWithShift operator is a Positional

feature, and the right subtree is rooted at a Shift internal node.

Region-specific Features In some applications, the specific position is not important. Rather, record-
ing the general location of a feature relative to a functional signal is more important. For instance, in
splice site detection, it may be important to record whether a motif occurs downstream or upstream of
the splice site. Region-specific features have been found to be important functional signals in sequence
classification problems such as splice site detection [2, 3]. Another operator, Regional, allows encoding
such local features in EFC. As illustrated in Supplementary Figure S4, its arguments are a compositional
feature in its left subtree and a right subtree rooted at Region.

Correlational Features Logically, there is no need for correlational features to be encoded explicitly,
as they can be represented as sets of conjunctive features (one such conjunctive feature was illustrated
above). However, in some applications, it may be computationally more effective to explicitly represent
these features and simultaneously serve as a form of bloat control. EFC encourages this by providing
an explicit Correlational operator node. An illustration of such a feature is shown in Supplementary
Figure S5.
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2 Population and Generation Mechanism in EFC

The initial population of features consists of N tree structures generated at random using the well-known
ramped half-and-half method [4]. The method combines the full and grow techniques to provide a mixture
of fully balanced and bushy GP trees. Half of the features in the initial population in EFC are obtained
using the full technique, and the other half using the grow technique. A maximum depth of D is specified
a priori, allowing the ramped half-and-half method to generate feature trees in the initial population
with ramped depths in the range {1, . . . , D}.

The full technique, which results in fully-balanced trees, recursively adds a non-terminal node to the
tree (sampled at random over the list of non-terminals until the maximum depth D sampled uniformly
at random in the {1, . . . D} range is reached. Terminal nodes are used at the leaf nodes. It is important
to note that, as a GP algorithm, EFC relies on the principle of closure; that is, all generated trees are
both syntactically and semantically correct. For example, once a non-terminal has been initialized, the
sampling of the roots of its subtrees (including leaves) is limited to those that are correct arguments to the
particular operator in the non-terminal. This constraint is also satisfied by the reproductive mechanisms
that take one or two feature trees and modify them to obtain a new child feature that is syntactically
and semantically correct.

The grow technique, which results in bushy trees, is similar to the full technique. However, the
technique does not restrict the choice of nodes to non-terminals till maximum depth is reached. While
the full technique results in fixed-shape trees, the grow technique results in trees of arbitrary shape. The
purpose for using both the full and grow techniques is to obtain a diverse initial population, which is key
to the ability of an EA to explore diverse regions in a potentially complex fitness landscape [4].

In our implementation of EFC in the EFFECT framework, we do not use the same fixed population
size at each generation. Each subsequent generation reduces the size of the population by r% over the
previous one. This strategy is known as implosion and is used to gradually apply selection pressure [5]
and so address the aging problem observed in GP.

A population of features evolves for a pre-specified number of generations, set to 25 in EFC (analysis
of fitness convergence shows this upper bound to be sufficient). Each population contributes its top `
features to a hall of fame. The purpose for employing a hall of fame is so that good features are not lost
over generations but instead are preserved and serve as a global memory of the EFC. In turn, the hall
of fame is used to initialize the next generation by contributing m << N randomly selected features.
sampled uniformly at random. Hall-of-fame mechanisms are widely used to improve performance when
searching large spaces.

Reproductive Operators

Mutation The role of mutation is to make a small or local incremental change to a selected parent in-
dividual to form a new child individual. In GP, due to the representation of individuals through GP trees,
the standard mutation operator is more disruptive than in other EAs. In the standard implementation,
this operator samples an internal node at random and replaces the entire subtree rooted at the selected
node with a new, randomly generated subtree [4]. In our implementation here, we pursue more controlled
implementations that are problem-specific; in other words, our implementation of the mutation operator
guarantees that the operator results in a small and incremental change. To achieve this, we introduce
four mutation operators, a motif mutation, a positional mutation, a shift mutation, and an adjacency
mutation, detailed below.

Supplementary Figure S7 illustrates how a selected parent individual subjected to some of these
mutations results in a new individual as a child. Tournament selection over tournaments of size 7 is
applied once to compare fitness values and select a winner as parent for mutation (the fitness function is
detailed below). Once a parent is selected for mutation, any of the four mutation operators is sampled
uniformly at random. If the domain of the operator is not found in the currently selected parent (for
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instance, the position mutation is sampled, but the parent feature is a compositional one), a mutation
operator is sampled anew, for a maximum of t trials.

Motif Mutation A motif mutation affects compositional and regional features. Any node with a motif
return type in the tree is selected with probability Pn set to a small value of 0.1 in our implementation
of EFC. A character in the motif is then selected equally at random and replaced with any letter of the
alphabet. This process is similar to the standard bit-flip operation in EAs. If the alphabet character set
has any mismatch characters, this form of change helps increase the range of string matching.

Position Mutation A position mutation affects positional positionWithShift, and correlational fea-
tures. The value in the leaf of the subtree rooted at a Position internal node is changed to an integer
sampled uniformly at random within the lengths of provided sequences. This allows exploring the presence
of a particular motif at other sequence positions.

Shift Mutation A shift mutation affects positionWithShift features. The value in the leaf of the
subtree rooted at a Shift internal node is changed to an integer sampled uniformly at random within the
range specified for the shift.

Adjacency Mutation Finally, the adjacency mutation affects correlational features. This operator
represents a larger change than the others above, as it replaces the entire left or right subtree of a
correlational feature with a randomly sampled tree. The purpose of this mutation is to explore alternative
adjacent motifs.

Crossover In this work, we employ a standard subtree crossover, which is one of the most common
genetic recombination operators used in GP [4]. Subtree crossovers have been shown to allow GP form
complex trees and thus explore vast search spaces more effectively. Unlike mutation, the magnitude
of a change as the result of crossover can be very large, effectively placing a child feature anywhere
in the feature space rather than a neighborhood of parent feature(s). Tournament selection with same
tournament size of 7 is carried out twice to obtain two individuals from a population. Given two selected
parent features, subtree crossover, illustrated in Supplementary Figure S8, finds a random node in each
of the parent trees for swapping. If the selected nodes do not match in their return type, and swapping
the subtrees rooted at these nodes does not violate the maximum depth constraint, then the swap is
performed. Otherwise, the process is repeated for a maximum of 10 times to find another random
position in the tree to swap. Successful swapping results in two child features, but only one is employed
in EFC, effectively discarding the other resulting child feature.

Fitness Function

In EFC, the goal is to maximize the surrogate fitness function defined for features. However, traditional
GP implementations are designed for fitness minimization [4]. So, in keeping with this, we define the
Koza fitness of a feature f in EFC as Koza(f) = 1/(Fitness(f)). EFC then converts the Koza fitness
back into the GP-adjusted fitness 1/(1 + Koza(f)) to select fit individuals. Note that the GP-adjusted
fitness takes values in [0, 1].

Bloat Control

EFC algorithm uses two such strategies for bloat control. First, it encourages explicit representations
of correlational features rather as a more complex set of conjunctive features. Second, it controls the
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complexity of parents selected for mutation or crossover through lexicographic tournament selection: if
multiple individuals have the same fitness, selection, the individual with the smaller tree depth is selected.

3 Parameter Tuning

We list here the tuned parameters for methods used in our comparative analysis. Those employed on
the HS site recognition problem are listed in Supplementary Table S1, followed by those employed on the
splice site recognition problem in Supplementary Table S2, and those employed on the Alu site recognition
problem in Supplementary Table S3.

Algorithms Final Tuned Parameters
K-mer K=1 to 8
Gibbs Sampling Motif Length Maximum =8

PWM-HMM Sequence Length= Average(210), ess =4
BayesNetwork Sequence Length= Average(210), ess =4,

Structure=InHomogenous Markov,95% confidence numerics
MixtureClassifier: algorithm=Quasi Newton Method,
method=CompositeLogPrior,
norm=true

HomogenousHMM Sequence Length= Average(210), Markov Chain Order=4
WAM-HMM Sequence Length= Average(210), Markov Chain Order=4
MSP MixtureClassifier: algorithm= Quasi Newton Method,

epsilon stopping condition=1E-6,
epsilon line search =1E-4,
norm=true)
MSP=(PWM, HMM, CompositeLogPrior)

WeightedPosition C=1.0, epsilon=1e-5, order=8, useSign=false
WeightedPositionWithShift C=0.1, epsilon=1e-5, order=8, useSign=false,shift=3

Table S1. Parameters used for experiments in HSS.
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Algorithms Final Tuned Parameters
K-mer K=1 to 8
Gibbs Sampling Motif Length Maximum =8

PWM-HMM Sequence Length=142, ess =4
BayesNetwork Sequence Length=142, ess =4,

Structure=InHomogenous Markov,95% confidence numerics
MixtureClassifier: algorithm=Quasi Newton Method,
method=CompositeLogPrior,
norm=true

HomogenousHMM Sequence Length=142, Markov Chain Order=2
WAM-HMM Sequence Length= 142, Markov Chain Order=4
MSP MixtureClassifier: algorithm= Quasi Newton Method,

epsilon stopping condition=1E-6,
epsilon line search =1E-3,
norm=true)
MSP=(PWM, HMM, CompositeLogPrior)

WeightedPosition C=1.1, epsilon=1e-5, order=8, useSign=false
WeightedPositionWithShift C=0.01, epsilon=1e-5, order=8, useSign=false,shift=3

Table S2. Parameters used for experiments in C Elegans (splice site).

Algorithms Final Tuned Parameters
K-mer K=1 to 8
Gibbs Sampling Motif Length Maximum =8

PWM-HMM Sequence Length= Average(90), ess =4
BayesNetwork Sequence Length= Average(90), ess =4,

Structure=InHomogenous Markov,95% confidence numerics
MixtureClassifier: algorithm=Quasi Newton Method,
method=CompositeLogPrior,
norm=true

HomogenousHMM Sequence Length= Average(90), Markov Chain Order=4
WAM-HMM Sequence Length= Average(90), Markov Chain Order=4
MSP MixtureClassifier: algorithm= Quasi Newton Method,

epsilon stopping condition=1E-6,
epsilon line search =1E-4,
norm=true)
MSP=(PWM, HMM, CompositeLogPrior)

WeightedPosition C=1.2, epsilon=1e-5, order=8, useSign=false
WeightedPositionWithShift C=1.1, epsilon=1e-5, order=8, useSign=false,shift=3

Table S3. Parameters used for experiments in Alu.
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4 Statistical Significance Results

In all experiments we employed Weka’s paired-t tester implementation for measuring statistical signif-
icance. WeKa’s implementation only outputs the algorithms which are significantly better, without
explicitly listing p-values; mean and standard deviations are provided. Supplementary Table S4 shows
means and standard deviations on the HSS recognition problem, and Supplementary Table S5 does so on
the ALU recognition problem.

Algorithm auROC auPRC

Feature-based
K-mer 82.20 (0.4) 82.6 (0.6)
Gibbs Sampling 79.3 (1.1) 50.3 (4.2)
EFFECT 89.7 (0.4) 89.2 (0.5)

Statistical-based
PWM-HMM 70.8 (1.2) 47.8 (1.1)
BayesNetwork 72.5 (1.2) 49.5 (2.3)
HomogenousHMM 82.02 (0.78) 71.5 (0.89)
WAM-HMM 80.05 (0.9) 70.0 (0.67)
MSP 85.5 (0.34) 72.9 (0.23)

Kernel-based
WeightedPosition 80.01 (0.22) 62.3 (0.9)
WeightedPositionShift 80.93 (0.25) 64.9 (1.1)

Table S4. auROC and auPRC comparison analysis for HSS recognition.

Algorithm auROC

Feature
K-mer 94.20 (0.2)
Gibbs Sampling 95.2 (0.35)
EFFECT 98.9 (0.14)

Statistical
PWM-HMM 77.45 (1.3)
BayesNetwork 86.82 (1.6)
HomogenousHMM 93.6 (0.41)
WAM-HMM 94.59 (0.4)
MSP 93.54 (0.6)

Kernel
WeightedPosition 96.9 (0.2)
WeightedPositionShift 97.8 (0.12)

Table S5. auROC and auPRC comparison analysis for recognition of ALU sites.
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5 Feature Selection Algorithm Comparisons

We have conducted a comprehensive comparison of our EFS algorithm with a diverse list of other feature
selection algorithms. Here we report this comparative analysis in the context of the HSS recognition
problem. The methods used for comparison are state-of-the-art filter and wrapper-based methods. Since
EFS narrows feature sets to around 50 features on average, we use the same as constraint while running
the other algorithms. We use 10 folds cross-validation as described in the Methodology section in the
manuscript for the purpose of this comparative analysis. Here is the list of feature selection methods
employed for comparison, together with the search mechanism and parameters:

• mRMR (minimum Redundancy Maximum Relevance) [6]. Used with number of features=50 and
selection= mutual information difference

• Correlation-based Feature Selection CFS (with Greedy Search) [7].

• FCBF (Fast Correlation based Search with SymmetricalUncertAttributeSet) [8]. Number of fea-
tures=50.

• Relief-F (with Ranker) [9]. Number of features=50, neighbors=10 and sigma=2.

• Information Gain Ratio (with Ranking). Number of features=50.

Wrapper based feature selection methods

• Wrapper with SVM and with Greedy Search (WrapperSubsetGreedy). Linear SVM, 5 folds,
thresold=0.01, C=1.0.

• Wrapper with SVM and with Genetic Algorithm Search (WrapperSubsetGenetic). Linear SVM, 5
folds, threshold=0.01, C=1.0, population=20, mutation=0.01, crossover=0.6, generations=20.

Supplementary Table S6 shows that there is no statistically-significant difference between EFS, Wrap-
perSubSetGenetic and FCBF; however, EFS gives a better mean for both auROC and auPRC.

Algorithm auROC auPRC

Filter-based
mRMR 71.49 52.6
CFS 84.7 78.5
FCBF 86.8 85.9
Relief-F 81.23 82.3
InfoGainRatio 73.3 63.3
EFFECT 89.7 89.2

Wrapper-based
WrapperSubsetGreedy 81.8 81.5
WrapperSubsetGenetic 87.1 86.8

Table S6. auROC and auPRC comparison analysis with different feature selection methods.
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6 Summary Statistics and other Analysis of Selected Features

Supplementary Table S7 shows some summary statistics on the information gain of features and number
of features (selected by the feature selection algorithm) obtained over 30 independent runs of EFFECT.

The features obtained by EFFECT are not expected to be identical, given the stochastic nature of
the feature generation and selection algorithms in the proposed framework. However, analysis of the
30 feature sets (obtained by running EFFECT 30 times) suggests that these sets share many features
with one another. Due to the ambiguous alphabet and the presence of disjunctive features, answering
the question of whether a feature appears in a feature set is not trivial. Nonetheless, we list here some
interesting features that are found on the majority of the 30 runs on each of the three problems considered
in this article. On the HSS recognition problem, a correlational feature capturing the presence of motifs
’GAT’ and ’ATCT’ was found in 30/30 of the halls of fame, and it was selected as a top feature in 27/30
runs. On the splice site recognition problem, conjunctional features over motifs ’AG’, ’GA’, and ’CG’
were ranked as top features in 29/30 runs. This is not surprising, as these motifs are known biological
signatures of splice sites. On the ALU recognition problem, motifs ’AAAAT’ and ’TGG’ were present as
features by themselves or combined via disjunction and ranked as top features in 30/30 runs.

HSS NN269 Acceptor NN269 Donor ALU

InfoGain
mean 0.02 0.158 0.141 0.12
std dev 0.00012 0.05 0.03 0.001
max 0.04 0.19 0.188 0.131
min 0.013 0.09 0.07 0.101

Nr. of Features
mean 43.1 47.1 24.3 108.1
std dev 3.2 2.3 4.8 5.3

Table S7. Summary statistics are shown for information gain and number of features over 30
independent runs of EFFECT.
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Figure Legends

Figure S1

Illustration of a compositional feature through the use of the matches operator.

Figure S2

Illustration of a positional feature through the use of the matchesAtPosition operator and Shift oper-
ators.

Figure S3

Illustration of a positional-shift feature through the use of the matchesAtPosition and Shift operators.

Figure S4

Illustration of a region-specific feature through the use of the matches and Region operators.

Figure S5

Illustration of a correlational feature that records the simultaneous presence of two features.

Figure S7

Illustration of the mutation operators in EFC.

Figure S8

Illustration of the crossover operator in EFC.
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Figure S1
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Figure S2
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Figure S3
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Figure S4
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Figure S5
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Figure S6

Figure S7
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Figure S8
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