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SUPPORTING MATERIAL

The fingerprint parameters are estimated in §1, the iris parameters are estimated in §2, and the

proposed policies are derived in §3. Figs. 1-8 and Table 1 are discussed in the main text.

1 Fingerprint Parameter Estimation

The data are described in §1.1, an overview of the parameter estimation procedure is provided in §1.2,

several probabilistic derivations are given in §1.3-1.6, and some computational details are described in §1.7.

1.1 The Data

Most of our data are taken from [1]. So as to have ample data to estimate the parameters of our model,

we only consider the experiments in [1] that use templates (as opposed to the direct images) that are

extracted from the field. We also restrict ourselves to labeled matchings, where the device provides the

label (e.g., right index) of the finger, and fingerprints are only matched against those with the same label.

We use 61 probabilities that appear in Figs. 8, 10 and 11 of [1]. Fig. 8 of [1] contains the probability

mass functions (PMFs) for the rank-1 finger and rank-2 finger during the best finger detection (BFD)

process. That is, for the ordering convention in Fig. 8 of [1] (i = 1, . . . , 10 correspond to left little, left

ring, left middle, left index, left thumb, right thumb, right index, right middle, right ring, right little),

we have p̂(1)i and p̂(2)i, which is the observed probability that finger i is ranked 1 or 2, respectively.

Figs. 10-11 in [1] provide various curves – each containing seven points – depicting the false reject rate

(FRR) vs. the false accept rate (FAR) during verification. We use the blue and red curves in Fig. 10 and

the green curve in Fig. 11. The blue curve in Fig. 10 performs verification using the first attempt of the

rank-1 finger during BFD, and we refer to the seven points on this curve as (FRR1k,FAR1k), k = 1, . . . , 7.

The red curve in Fig. 10 of [1] corresponds to using up to three attempts of the rank-1 finger during BFD,

and the seven points on this curve are denoted by (FRR1mk,FAR1mk), k = 1, . . . , 7. The green curve in

Fig. 11 of [1] represents the fusion (i.e., sum) of the rank-1 and rank-2 fingers during BFD with up to

three attempts, and these seven points are given by (FRR2mk,FAR2mk), k = 1, . . . , 7. In addition, for

l = 3, 4, 5, 6, we know that the threshold value t̂l = 10l generates the FAR value FARl = 10−l when a

single finger is used.
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Finally, as noted in the main text, 1.87% of residents were excluded from the verification studies due

to poor image quality (pg 23-24 of [1]). Hence, we consider two scenarios. In the exclusion scenario, we

assume that the 1.87% of people are omitted from the study and use the 21 FRR values directly. In

the inclusion scenario, we assume that the failure-to-acquire (FTA) rate is 0.0187 and that the 21 FRR

and FAR values from Figs. 10-11 in [1] are false non-match rates (FNMR) and false match rates (FMR),

respectively. We then recalculate the 21 FRR and FAR values via the formulas FRR=FTA+FNMR(1-

FTA) and FAR=FMR(1-FTA) (§8.3.2.2 and §8.3.3.2 of [2]).

1.2 Overview of Parameter Estimation Procedure

The experimental set-up that generates the rank-1 and rank-2 PMFs in Fig. 8 of [1] differs from the

set-up used to generate the FRR vs. FAR curves in Figs. 10-11 of [1] and the FAR vs. t̂ curve provided

separately: the experimental set-up for Fig. 8 uses one very good sensor and includes the 1.87% of people

that were unlikely to be verified successfully, while the latter uses the average of 14 good sensors and

excludes the 1.87% of people with poor image quality. Consequently, we do not jointly estimate all of

our parameter values, but rather use a two-stage approach, where we first estimate (c1, . . . , c10) from the

PMFs in Fig. 8 of [1] and then estimate the remaining parameter values using the FRR vs. FAR curves

in Figs. 10-11 of [1] and the FAR vs. t̂ relationship.

More specifically, let p(1)i and p(2)i for i = 1, . . . , 10 be the predicted rank-1 and rank-2 probabilities

corresponding to the PMFs in Fig. 8 of [1]; we derive expressions for these probabilities in terms of the

model parameters in §1.3. Because the PMFs in Fig. 8 of [1] clearly provide the best data for estimating

(c1, . . . , c10), in the first stage we solve the least squares problem,

min
c1,...,c10,µ,τ,σ,s

2∑
j=1

10∑
i=1

(p(j)i − p̂(j)i)
2 (1)

subject to

10∑
i=1

ci = 10, (2)

and retain the values of (c1, . . . , c10) from the solution to (1)-(2) and discard the µ, τ , σ and s values

from the solution. As we see in §1.3, the parameter δ does not feature in this optimization and the

constraint (2) fixes the scaling of (c1, . . . , c10).

In the second stage, we estimate the remaining parameters using the three FRR vs. FAR curves
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in Figs. 10-11 of [1] and the FAR vs. t̂ relationship. All of these FAR values were calculated using a

single imposter probability distribution (using BFD fingers) that does not vary by finger i or by image

quality. Let G1(t) be the cumulative distribution function (CDF) and Ḡ1(t) be the complementary CDF

of a lognormal distribution with unknown parameters (µG, σ
2
G). Let G2(t) and Ḡ2(t) be the CDF and

complementary CDF of the distribution that is the convolution of two lognormal (µG, σ
2
G) distributions.

These two complementary CDFs are associated with the imposter log similarity score (i.e., of different

people, one at enrollment and one at verification) for one finger and for the fusion (i.e., sum) of two

fingers, respectively. Because of the difficulties in simultaneously estimating the measurement noise for

genuine and imposter distributions, we do not attempt to capture the former, and hence assume that

Ḡ1(t) and Ḡ2(t) hold even if multiple attempts are taken.

To estimate the parameters µG and σG, we use the data (FARl, t̂l) for l = 3, 4, 5, 6. We take the

FAR values as hard constraints, thereby implicitly fixing the thresholds tl in terms of µG and σG, and

minimize the sum of squared errors between the logarithm of the predicted and the observed thresholds

(the presence of the ln function in (3) is explained in §1.7):

min
µG,σG

6∑
l=3

(ln tl − ln t̂l)
2 (3)

subject to Ḡ1(tl) = FARl for l = 3, 4, 5, 6. (4)

To estimate the remaining parameters, let t1k and t2k for k = 1, . . . , 7 be the unknown thresholds

used to make accept/reject decisions, which generated the points on the FRR vs. FAR curves for the

one-finger policies in Fig. 10 of [1] and the fusion policy in Fig. 11 of [1], respectively; because Ḡ1(t)

is assumed to apply in the one-finger case regardless of the number of attempts, and the FAR values

provided in the blue (single-attempt rank-1 finger) and red (rank-1 finger with up to three attempts)

curves in Fig 10 of [1] are the same, it follows that the thresholds are the same in the two rank-1 finger

cases. Let F1(t), F1m(t) and F2m(t) be the CDFs corresponding to the similarity scores for the single-

attempt rank-1 finger, the rank-1 finger with up to three attempts, and the fusion of rank-1 and rank-2

with up to three attempts, respectively, so that the predicted FRRs in these three cases are F1(t1k),

F1m(t1k) and F2m(t2k). Expressions for these three CDFs in terms of the model parameters are derived

in §1.4-1.6. We take the FAR values as hard constraints, thereby fixing the thresholds t1k and t2k using

the estimates of µG and σG, and choose the remaining five parameters to minimize the sum of squared
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relative errors (we use relative errors because the various FRR values in Figs 10-11 of [1] are of different

orders of magnitude):

min
µ,τ,σ,δ,s

7∑
k=1

(
F1(t1k)− FRR1k

FRR1k

)2

+

7∑
k=1

(
F1m(t1k)− FRR1mk

FRR1mk

)2

+

7∑
k=1

(
F2m(t2k)− FRR2mk

FRR2mk

)2

(5)

subject to Ḡ1(t1k) = FAR1k for k = 1, . . . , 7, (6)

Ḡ2(t2k) = FAR2mk for k = 1, . . . , 7. (7)

In §1.7, we discuss the details of solving (3)-(4) and (5)-(7), which include casting (3)-(4) as a simple

linear regression problem, reformulating (5)-(7) into an unconstrained optimization problem by explicitly

solving constraints (6)-(7) for the thresholds t1k and t2k using simulation, and constructing an initial

solution for the optimization routine.

As explained in the main text, our model finesses some of the details of the BFD and verification

processes because we do not have the raw similarity score data from [1]. More specifically, we approximate

the color-coded ranking system by simply assuming that fingers are ranked solely by their Yi values (e.g.,

the rank-1 finger is arg maxi Yi). We also approximate the “up to three attempts” verification process

in the derivation of F1m(t) and F2m(t) by simply assuming that three attempts are always made and

the maximum score of the three attempts is used (the subscript m is mnemonic for maximum). Because

fingerprints with image quality 1 or 2 should be easy to verify, this simplifying assumption should not

introduce very much error.

1.3 Derivation of p(1)i and p(2)i

In this section, we derive p(1)i and p(2)j , which are used in equation (1). Let X̃i = lnXi ∼ N (ciθ, σ
2),

where Xi is the true similarity score for finger i. Let Yi be the observed similarity score during BFD

for finger i, and let Ỹi = lnYi. Then Ỹi = X̃i + maxk=1,2,3 ε̃ik, where ε̃ik ∼ N (δ, s2) are independent for

k = 1, 2, 3.

We use Clark’s method [7], which constructs an accurate approximation for the maximum of several

normal random variables, to approximate maxk=1,2,3 ε̃ik by a normal random variable ε̃mi with mean
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δ + µ3 and variance σ2
3 , where

µ3 =
s√
π

[
Φ

(
1√

2π − 1

)
+
√

2π − 1φ

(
1√

2π − 1

)]
, (8)

σ2
3 = s2

[
1 +

√
2π − 1

π
φ

(
1√

2π − 1

)]
− µ2

3. (9)

Thus Ỹi = X̃i + ε̃mi, and using the independence of X̃i and ε̃mi, we get that Ỹi ∼ N (ciθ+ δ+µ3, α
2),

where θ ∼ N (µ, τ2) and α2 , σ2 +σ2
3 . Let Ỹmi = maxj 6=i Ỹj . Then the probability that finger i is chosen

as the best finger equals P (Ỹi > Ỹmi). There are different ways to derive this quantity, and we use an

approach that is amenable to numerical integration:

p(1)i = P (Ỹi > Ỹmi),

= E
[
P (Ỹi > Ỹmi|θ, Ỹi)

]
,

= E

 10∏
j 6=i

P (Ỹi > Ỹj |θ, Ỹi)

 ,
=

∫
θ

∫
Ỹi

 10∏
j 6=i

Φ

(
Ỹi − (cjθ + δ + µ3)

α

) e−
(Ỹi−(ciθ+δ+µ3))2

2α2

√
2πα

e−
(θ−µ)2

2τ2

√
2πτ

dỸi dθ, (10)

=

∫
θ̂

∫
yi

h1(θ̂, yi)
e−θ̂

2

e−y
2
i

π
dyi dθ̂, (11)

where

h1(θ̂, yi) ,
10∏
j 6=i

Φ

(
√

2yi + (ci − cj)
µ+
√

2τ θ̂

α

)
. (12)

The change of variable in (11) converts the integral in (10) into a form where we can apply Gauss-

Hermite quadrature, which is well-suited for functions that require integration of the normal density

( [4], pg 129). Gauss-Hermite quadrature approximates
∫∞
−∞ f(v)e−v

2

dv by
∑n
i=1 wif(vi), where N is

the number of sample points for the approximation, and the points vi and the associated weights wi are

fixed once n is chosen. This procedure yields

p(1)i ,
1

π

N∑
k=1

N∑
l=1

h1(vk, vl)wkwl. (13)



6

We perform similar calculations to derive p(2)i. If we define Ỹmij = maxk 6=i,j Ỹk, then

p(2)i =

10∑
j 6=i

P (Ỹmij < Ỹi < Ỹj),

=

10∑
j 6=i

E[P (Ỹmij < Ỹi < Ỹj |θ, Ỹi)],

=

10∑
j 6=i

E[P (Ỹmij < Ỹi|θ, Ỹi) P (Ỹi < Ỹj |θ, Ỹi)],

=

10∑
j 6=i

E

 10∏
k 6=i,j

P (Ỹk < Ỹi|θ, Ỹi)

 P (Ỹi < Ỹj |θ, Ỹi)

 ,
=

10∑
j 6=i

E

 10∏
k 6=i

P (Ỹk < Ỹi|θ, Ỹi)

 P (Ỹi < Ỹj |θ, Ỹi)
P (Ỹj < Ỹi|θ, Ỹi)

 ,
=

10∑
j 6=i

E

 10∏
k 6=i

P (Ỹk < Ỹi|θ, Ỹi)

 (
1

P (Ỹj < Ỹi|θ, Ỹi)
− 1

) ,
= E

 10∑
j 6=i

 10∏
k 6=i

P (Ỹk < Ỹi|θ, Ỹi)

 (
1

P (Ỹj < Ỹi|θ, Ỹi)
− 1

) ,
= E

 10∏
k 6=i

P (Ỹk < Ỹi|θ, Ỹi)

 10∑
j 6=i

(
1

P (Ỹj < Ỹi|θ, Ỹi)
− 1

) ,
= E

 10∏
j 6=i

P (Ỹj < Ỹi|θ, Ỹi)

  10∑
j 6=i

1

P (Ỹj < Ỹi|θ, Ỹi)
− (m− 1)

 ,
= E

 10∏
j 6=i

Φ

(
Ỹi − (cjθ + µ3 + δ)

α

)  10∑
j 6=i

1

Φ
(
Ỹi−(cjθ+µ3+δ)

α

) − (m− 1)

 ,
=

∫
θ

∫
Ỹi

 10∏
j 6=i

Φ

(
Ỹi − (cjθ + µ3 + δ)

α

)  10∑
j 6=i

1

Φ
(
Ỹi−(cjθ+µ3+δ)

α

) − (m− 1)


.
e−

(Ỹi−(ciθ+µ3+δ))2

2α2

√
2πα

e−
(θ−µ)2

2τ2

√
2πτ

dỸi dθ. (14)

Approximating the double integral in (14) with Gauss-Hermite quadrature with N sample points vi and

associated weights wi, we get

p(2)i ,
1

π

N∑
k=1

N∑
l=1

h2(vk, vl)wkwl, (15)
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where

h2(θ̂, yi) , h1(θ̂, yi)

−(m− 1) +

10∑
j 6=i

1

Φ
(√

2yi + (ci − cj)µ+
√

2τθ̂
α

)
 . (16)

Note from (12) and (16) that neither h1(θ̂, yi) nor h2(θ̂, yi) depend on δ, and hence p1(i) and p2(i)

do not depend on δ for i= 1, . . . , 10. Further, we can always scale the parameters (c1, . . . , c10), σ and s

to obtain scaled values of (Ỹ1, . . . , Ỹ10), which nevertheless preserve the probabilities p1(i) and p2(i) for

i= 1, . . . , 10. This justifies constraint (2), which fixes the scaling.

1.4 Derivation of F1(t1k)

As explained in §1.3, X̃i is the true log genuine similarity score for finger i and Ỹi = X̃i + ε̃mi is the log

genuine similarity score observed during the BFD process, so that Ỹi = lnYi ∼ N (ciθ+ δ + µ3, σ
2 + σ2

3).

Let the subscripts (i) be defined by Y(1) ≥ · · · ≥ Y(10), regardless of which random variables the subscripts

appear on. Let Z̃i = X̃i + δ̃i be the log genuine similarity score during verification, where δ̃i ∼ N (δ, s2)

and is independent of ε̃mi. It follows that Z̃i = lnZi ∼ N (ciθ + δ, σ2 + s2). Recalling that F1(t) is the

CDF of the genuine similarity score in the single-attempt rank-1 finger scenario, we have that the FRR

for this case is

F1(t1k) = P (Z̃(1) ≤ ln t1k). (17)

Our goal in this section is to derive the CDF of Z̃(1).

Recalling that Ỹmi = maxj 6=i Ỹj , we have that

P (Z̃(1) < t) =

10∑
i=1

P (Z̃i < t, Ỹi > Ỹmi). (18)

We use the tower property in conjunction with conditioning on variables that – to ease the computa-

tional complexity – make the events within the probability conditionally independent. In particular, we

condition on θ and Ỹi because

P (Z̃i < t, Ỹi > Ỹmi) =E
[
P (Z̃i < t, Ỹi > Ỹmi|θ, Ỹi)

]
,

=E
[
P (Z̃i < t|θ, Ỹi)P (Ỹi > Ỹmi|θ, Ỹi)

]
,

=E
[
P (X̃i + δ̃i < t|θ, Ỹi)P (Ỹi > Ỹmi|θ, Ỹi)

]
. (19)
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To evaluate P (X̃i + δ̃i < t|θ, Ỹi) in (19), we apply Prop. 3.13 on page 116 of [5], which gives the

distribution of one normal random vector conditioned on another (possibly correlated) random vector.

This result implies that given (θ, Ỹi), X̃i ∼ N (µi|Ỹi , σ̂
2), where

µi|Ỹi =
ciθ/σ

2 + (Ỹi − δ − µ3)/σ2
3

1/σ2 + 1/σ2
3

, (20)

σ̂2 =
1

1/σ2 + 1/σ2
3

. (21)

It follows that

P (Z̃(1) < t) =

10∑
i=1

E
[
P (X̃i + δ̃i < t|θ, Ỹi)P (Ỹi > Ỹmi|θ, Ỹi)

]
by (18)− (19),

=

10∑
i=1

E

Φ

(
t− µi|Ỹi − δ√

σ̂2 + s2

) 10∏
j 6=i

P (Ỹi > Ỹj |θ, Ỹi)

 by (20)− (21),

=

10∑
i=1

E

Φ

(
t− µi|Ỹi − δ√

σ̂2 + s2

) 10∏
j 6=i

Φ

(
Ỹi − (cjθ + µ3 + δ)

α

) . (22)

Finally, we employ a change of measure in conjunction with numerical integration to reduce the

number of Φ(·) evaluations needed at each approximation point in the double integral version of (22).

Given θ, the random variables (Ỹ1, . . . , Ỹ10) inside the expectation in (22) are normally distributed with

the same variance. We use Girsanov’s theorem ( [6], §3.5) to change the means of (Ỹ1, . . . , Ỹ10) so that

given θ, they all have the same distribution, although this will require a compensating multiplicative

term in the expectation.

Recalling that Ỹi ∼ N (ciθ + δ + µ3, α
2), we define Ỹ ∼ N (c̄θ + δ + µ3, α

2) for a constant c̄ that may

be chosen arbitrarily, and let

aiY , exp

− (ci − c̄)θ
[
(ci − c̄)θ − 2

(
Ỹ − (c̄θ + δ + µ3)

)]
2α2

 . (23)

Then, given θ, Girsanov’s theorem implies that for any function h(·),

E[h(Ỹi)] = E[h(Ỹ )aiY ] for i = 1, . . . , 10. (24)
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Applying (24) to (22) yields

P (Z̃(1) < t) =

10∑
i=1

E

Φ

(
t− µi|Ỹi − δ√

σ̂2 + s2

) 10∏
j 6=i

Φ

(
Ỹi − (cjθ + µ3 + δ)

α

) ,
=

10∑
i=1

E

aiY Φ

(
t− µi|Ỹ − δ√

σ̂2 + s2

) 10∏
j 6=i

Φ

(
Ỹ − (cjθ + µ3 + δ)

α

) by (24),

=

10∑
i=1

E

aiY Φ

(
t− µi|Ỹ − δ√

σ̂2 + s2

) ∏10
j=1 Φ

(
Ỹ−(cjθ+µ3+δ)

α

)
Φ
(
Ỹ−(ciθ+µ3+δ)

α

)
 ,

= E


 10∏
j=1

Φ

(
Ỹ − (cjθ + µ3 + δ)

α

) 10∑
i=1

aiY Φ
(
t−µi|Ỹ −δ√
σ̂2+s2

)
Φ
(
Ỹ−(ciθ+µ3+δ)

α

)
 . (25)

1.5 Derivation of F1m(t1k)

We now consider the maximum of three verification attempts with the best finger. Let Z̃ij = X̃i + δ̃ij ,

where δ̃ij ∼ N (δ, s2) are independent for j = 1, 2, 3, and define the best observed log measurement

as Z̃mi = X̃i + max1≤j≤3 δ̃ij . Repeating the steps in §1.3, we use Clark’s method [7] to approximate

max1≤j≤3 δ̃ij by a normal random variable δ̃mi with mean δ+µ3 and variance σ2
3 given in (8)-(9). Thus,

we have Z̃mi = X̃i + δ̃mi where X̃i and δ̃mi are independent. The FRR in this case is

F1m(t1k) = P (Z̃m(1) ≤ ln t1k), (26)

and our goal is to derive the CDF of Z̃m(1).

Noting that P (Z̃m(1) < t) = P (X̃(1) + δ̃m(1) < t) = P (X̃(1) + δ̃m(1) − µ3 < t− µ3) and comparing this

expression to P (Z̃(1) < t) = P (X̃(1) + δ̃(1) < t) from §1.4, we infer that equation (25) can be generalized

to three attempts by substituting t− µ3 for t and σ2
3 for s2, which yields

P (Z̃m(1) < t) = E


 10∏
j=1

Φ

(
Ỹ − (cjθ + µ3 + δ)

α

) 10∑
i=1

aiY Φ

(
t−µ3−µi|Ỹ −δ√

σ̂2+σ2
3

)
Φ
(
Ỹ−(ciθ+µ3+δ)

α

)
 . (27)
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1.6 Derivation of F2m(t2k)

This section considers the most complicated case: the fusion (i.e., sum) of the best of the three attempts

for the best two fingers. The FRR in this case is

F2m(t2k) = P (eZ̃m(1) + eZ̃(2)m ≤ ln t2k), (28)

Recall that Ỹmij = maxk 6=i,j Ỹk, which is the maximum of eight random variables. Our goal is to derive

the CDF for eZ̃m(1) + eZ̃m(2) , which can be expressed as

P (eZ̃m(1) + eZ̃m(2) < t) =

10∑
i,j
i6=j

P (eZ̃mi + eZ̃mj < t, Ỹi > Ỹj > Ỹmij). (29)

We begin by repeating the steps in §1.4: condition on certain quantities and use the tower property,

use Prop. 3.13 in [5] to calculate the conditional expectations, and use Girsanov’s theorem to reduce the

computational complexity. Although there are many possible combinations of variables to condition on,

we find it computationally convenient to condition on (θ, Ỹj , Z̃mi), which yields

P (eZ̃mi + eZ̃mj < t, Ỹi > Ỹj > Ỹmij)

= E
[
P (eZ̃mi + eZ̃mj < t, Ỹi > Ỹj > Ỹmij |θ, Ỹj , Z̃mi)

]
,

= E
[
P (eZ̃mi + eZ̃mj < t|θ, Ỹj , Z̃mi)P (Ỹi > Ỹj |θ, Ỹj , Z̃mi)P (Ỹj > Ỹmij |θ, Ỹj)

]
,

= E
[
P (eX̃j+δ̃mj < t− eZ̃mi |θ, Ỹj , Z̃mi)P (X̃i + ε̃mi > Ỹj |θ, Ỹj , Z̃mi)P (Ỹj > Ỹmij |θ, Ỹj)

]
,

= E
[
P (X̃j + δ̃mj < ln(t− eZ̃mi)+|θ, Ỹj , Z̃mi)P (X̃i + ε̃mi > Ỹj |θ, Ỹj , Z̃mi)P (Ỹj > Ỹmij |θ, Ỹj)

]
, (30)

where x+ = max{x, 0}.

As in §1.5, we approximate δ̃mj in (30) by a normal random variable with mean δ + µ3 and variance

σ2
3 given in (8)-(9). Thus, given θ, Z̃mj is approximately distributed as N (cjθ+δ+µ3, σ

2 +σ2
3), where we

use the independence of X̃j and δ̃mj in calculating the variance. In (30), we are interested in calculating

the conditional distribution of X̃i given Z̃mi and θ. Noting that Z̃mi = X̃i + δ̃mi, and using Prop. 3.13

in [5], we find that

X̃i|Z̃mi ∼ N (µi|Z̃mi , σ̂
2), (31)
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where σ̂2 is given in (21) and

µi|Z̃mi =
ciθ/σ

2 + (Z̃mi − δ − µ3)/σ2
3

1/σ2 + 1/σ2
3

. (32)

Referring again to (30), we already know X̃j|Ỹj ∼ N (µj|Ỹj , σ̂
2) from Section §1.4. Based on this fact

and (29)-(32), we calculate the first two probabilities inside the expectation in (30) to get

P (eZ̃m(1) + eZ̃m(2) < t)

=

10∑
i,j
i 6=j

E

[
Φ

(
ln(t− eZ̃mi)+ − µj|Ỹj − δ − µ3√

σ̂2 + σ2
3

)
Φ̄

(
Ỹj − µi|Z̃mi − δ − µ3√

σ̂2 + σ2
3

)
P (Ỹj > Ỹmij |θ, Ỹj)

]
,

=

10∑
i,j
i 6=j

E

Φ

(
ln(t− eZ̃mi)+ − µj|Ỹj − δ − µ3√

σ̂2 + σ2
3

)
Φ̄

(
Ỹj − µi|Z̃mi − δ − µ3√

σ̂2 + σ2
3

)
10∏

n 6=i,j

P (Ỹj > Ỹn|θ, Ỹj)

 ,
=

10∑
i,j
i 6=j

E

Φ

(
ln(t− eZ̃mi)+ − µj|Ỹj − δ − µ3√

σ̂2 + σ2
3

)
Φ̄

(
Ỹj − µi|Z̃mi − δ − µ3√

σ̂2 + σ2
3

)
10∏

n 6=i,j

Φ

(
Ỹj − (cnθ + δ + µ3)

α

) .
(33)

Turning to the change of measure, we take advantage of the fact that, given θ, Ỹj and Z̃mi are

independent for i 6= j. Given θ, we change the measure of Ỹj , Z̃mi in (33) to Ỹ ∼ N (c̄θ+δ+µ3, α
2), Z̃m ∼

N (c̄θ + µ3, α
2), and compensate by multiplying by the corresponding terms

ajY , exp

− (cj − c̄)θ
[
(cj − c̄)θ − 2

(
Ỹ − (c̄θ + δ + µ3)

)]
2α2

 , (34)

aiZm , exp

− (ci − c̄)θ
[
(ci − c̄)θ − 2

(
Z̃m − (c̄θ + δ + µ3)

)]
2α2

 , (35)
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to get

P (eZ̃m(1) + eZ̃m(2) < t)

=

10∑
i,j
i 6=j

E

Φ

(
ln(t− eZ̃mi)+ − µj|Ỹj − δ − µ3√

σ̂2 + σ2
3

)
Φ̄

(
Ỹj − µi|Z̃mi − δ − µ3√

σ̂2 + σ2
3

)
10∏

n 6=i,j

Φ

(
Ỹj − (cnθ + δ + µ3)

α

)
=

10∑
i,j
i 6=j

E

[
Φ

(
ln(t− eZ̃m)+ − µj|Ỹ − δ − µ3√

σ̂2 + σ2
3

)
Φ̄

(
Ỹ − µi|Z̃m − δ − µ3√

σ̂2 + σ2
3

)

.

10∏
n6=i,j

Φ

(
Ỹ − (cnθ + δ + µ3)

α

)
aiZmajY

 ,

=E


[

10∏
n=1

Φ

(
Ỹ − (cnθ + δ + µ3)

α

)]
10∑
i,j
i 6=j

Φ

(
ln(t−eZ̃m )+−µj|Ỹ −δ−µ3√

σ̂2+σ2
3

)
Φ̄

(
Ỹ−µi|Z̃m−δ−µ3√

σ̂2+σ2
3

)
aiZmajY

Φ
(
Ỹ−(ciθ+δ+µ3)

α

)
Φ
(
Ỹ−(cjθ+δ+µ3)

α

)
 .

(36)

We note that this change of measure is more efficient than applying Clark’s approximation to the last

probability in (33) and then invoking a change of measure.

Because the expression in (36) is difficult to compute, we perform one final step, which uses a

monomial-based integrating scheme called cubature [3] combined with the Gauss-Laguerre scheme [4].

Suppose we need to calculate for any function f(·) on R3,

E
[
f(θ, Ỹ , Z̃m)

]
=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(θ, y, z)
e−(θ−µ)2/2τ2

√
2πτ

e−(y−c̄θ−δ−µ3)2/2α2

√
2πα

e−(z−(c̄θ+δ+µ3))2/2α2

√
2πα

dθ dy dz.

(37)

Consider the substitution

θ̂ =
θ − µ√

2τ
⇒ dθ̂ =

dθ√
2τ
, θ = µ+

√
2τ θ̂, (38)

ŷ =
y − (c̄θ + δ + µ3)√

2α
⇒ dŷ =

dy√
2α
, y = c̄θ + δ + µ3 +

√
2αŷ, (39)

ẑ =
z − (c̄θ + δ + µ3)√

2α
⇒ dẑ =

dz√
2α
, z = c̄θ + δ + µ3 +

√
2αẑ. (40)

In shorthand, we denote the relations on the right side of (38)-(40) by (θ, y, z) = H1(θ̂, ŷ, ẑ). Making this
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substitution into (37) yields

E
[
f(θ, Ỹ , Z̃m)

]
=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(H1(θ̂, ŷ, ẑ))
e−(θ̂2+ŷ2+ẑ2)

π3/2
dθ̂ dŷ dẑ. (41)

We now convert to spherical coordinates as follows: let (θ̂, ŷ, ẑ) = H2(r,u) , (ru1, ru2, ru3), and let

U3 represent the surface of a unit sphere in three dimensions with dA(u) representing its infinitesimal

area element. Substituting into (41), we get

E
[
f(θ, Ỹ , Z̃m)

]
=

∫ ∞
r=0

∫
U3

f(H1(H2(r,u)))
e−r

2

π3/2
r2 dA(u) dr,

=

∫ ∞
r=0

e−r
2

π3/2
r2

∫
U3

f(H1(H2(r,u))) dA(u)︸ ︷︷ ︸
S(r)

dr, (42)

=

∫ ∞
r=0

e−r
2

π3/2
r2S(r) dr. (43)

Applying to (43) the change of variable,

R = r2 ⇒ dR = 2r dr, r =
√
R,

we get

E
[
f(θ, Ỹ , Z̃m)

]
=

∫ ∞
R=0

e−R

π3/2
RS(
√
R)

dR

2
√
R

=
1

2π3/2

∫ ∞
R=0

S(
√
R) e−R

√
R dR

≈ 1

2π3/2

nGL∑
k=1

wGL,k S(
√
xGL,k), (44)

where (44) holds with weights and sample points obtained using the Gauss-Laguerre scheme, which can

approximate integrals of the form
∫∞

0
f(x)
√
xe−x dx by

∑N
i=1 wif(xi) ( [4], pg 130).

The function S(·) in (42), which is a surface integral, is approximated by choosing points (and cor-

responding weights) on the surface of the unit sphere. This technique of evaluating multi-dimensional

surface integrals as a weighted sum of the function evaluated at points on the surface is called cubature,

and has been applied for functions integrated against a Gaussian density [3]. That is, we approximate
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∫
S
f(x)dA(x) as

∑N
i=1 wif(xi), where for a d-dimensional surface S, ∀i,xi ∈ Rd. This scheme broadly

implies

S(r) =

∫
U3

f(H1(H2(r,u))) dA(u) ≈
NCub∑
l=1

wCub,l f(H1(H2(r,xCub,l))), (45)

and substituting (45) into (43) yields

E
[
f(θ, Ỹ , Z̃m)

]
≈ 1

2π3/2

NGL∑
k=1

wGL,k

NCub∑
l=1

wCub,l (f ◦H1 ◦H2)(
√
xGL,k,xCub,l). (46)

Equation (46) provides a numerical integration scheme for any function f(·) on R3 introduced in (37); we

need to apply (46) to the function in (36). Before that, we write the CDF of eZ̃m(1) + eZ̃m(2) in a format

that is amenable to numerical computation (more specifically, we take the exponent of the logarithms in

obtaining (48) from (47) because the aiZm and ajY terms can be very large), and – for ease of reference

– we define all quantities in one place that are required to compute this CDF:

P (eZ̃m(1) + eZ̃m(2) < t)

= E


[

10∏
n=1

Φ

(
Ỹ − (cnθ + δ + µ3)

α

)]
10∑
i,j
i 6=j

Φ

(
ln(t−eZ̃m )+−µj|Ỹ −δ−µ3√

σ̂2+σ2
3

)
Φ̄

(
Ỹ−µi|Z̃m−δ−µ3√

σ̂2+σ2
3

)
aiZmajY

Φ
(
Ỹ−(ciθ+δ+µ3)

α

)
Φ
(
Ỹ−(cjθ+δ+µ3)

α

)
 ,

(47)

=E


10∑
i,j
i6=j

ηjξi exp

[(
10∑
n=1

ln Φn

)
+ ln aiZm + ln ajY − ln Φi − ln Φj

] , (48)
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where

ξi , Φ̄

(
Ỹ − µi|Z̃m − δ − µ3√

σ̂2 + σ2
3

)
, ηj , Φ

(
ln(t− eZ̃m)+ − µj|Ỹ − δ − µ3√

σ̂2 + σ2
3

)
,

Φn , Φ

(
Ỹ − (cnθ + δ + µ3)√

σ2 + σ2
3

)
, µj|Ỹ ,

cjθ/σ
2 + (Ỹ − δ − µ3)/σ2

3

1/σ2 + 1/σ2
3

,

σ̂2 ,
1

1/σ2 + 1/σ2
3

, µi|Z̃m ,
ciθ/σ

2 + (Z̃m − δ − µ3)/σ2
3

1/σ2 + 1/σ2
3

,

α2 , σ2 + σ2
3 ,

Ỹ ∼ N (c̄θ + δ + µ3, σ
2 + σ2

3), ln ajY , −
(cj − c̄)θ

[
(cj − c̄)θ − 2

(
Ỹ − (c̄θ + δ + µ3)

)]
2(σ2 + σ2

3)
,

Z̃m ∼ N (c̄θ + δ + µ3, σ
2 + σ2

3), ln aiZm , −
(ci − c̄)θ

[
(ci − c̄)θ − 2

(
Z̃m − (c̄θ + δ + µ3)

)]
2(σ2 + σ2

3)
.

(49)

Applying (46) to (48), we get

P (eZ̃m(1) + eZ̃m(2) < t)

≈ 1

2π3/2

NGL∑
k=1

wGL,k

NCub∑
l=1

wCub,l

10∑
i,j
i 6=j

ηklj ξ
kl
i exp

[(
10∑
n=1

ln Φkln

)
+ ln akliZm + ln akljY − ln Φkli − ln Φklj

]
, (50)

where the superscript kl is used to emphasize that the quantity depends on k and l through (θkl, Ỹ kl, Z̃klm).

Recall that (θkl, Ỹ kl, Z̃klm) = (H1 ◦H2)(
√
xGL,k,xCub,l), which upon expanding gives

θkl = µ+
√

2τ
√
xGL,k xCub,l1,

Ỹ kl = c̄θkl + δ + µ3 +
√

2α
√
xGL,k xCub,l2,

Z̃klm = c̄θkl + δ + µ3 +
√

2α
√
xGL,k xCub,l3.

(51)

In summary, we calculate the fusion probability by using (50), with all its variables evaluated using (49)

at the values of triplet (θkl, Ỹ kl, Z̃klm) described by (51).

1.7 Solving Problems (3)-(4) and (5)-(7)

In this section, we discuss the computational details of solving (3)-(4) and (5)-(7), which include cast-

ing (3)-(4) as a simple linear regression problem, reducing (5)-(7) to an unconstrained optimization
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problem by solving constraints (6)-(7) for the thresholds t1k and t2k, and constructing an initial solution

for the optimization routine in (5)-(7).

Recalling that Ḡ1(t) is the complementary CDF of a lognormal with parameters (µG, σ
2
G), we see that

the left side of (4) is equal to Ḡ1(tl) = Φ̄
(

ln tl−µG
σG

)
. Equating this expression to FARl yields

ln tl = µG + σGΦ̄−1(FARl) for l = 3, 4, 5, 6, (52)

where the values of parameters µG and σG need to be estimated. Thus (52) provides theoretical estimates

of the log thresholds, and because we already know the observed log thresholds ln t̂l, we use linear

regression to solve (3) and obtain estimates of µG and σG.

Given µG and σG, we can transform problem (5)-(7) into an unconstrained optimization problem.

Constraint (6) can be rearranged as

t1k = eµG+σGΦ̄−1(FAR1k) for k = 1, . . . , 7. (53)

However, because there is no simple expression for the sum of two iid lognormals, it is hard to directly

solve for t2k in constraint (7). The approximation in [8] is not sufficiently accurate for our purposes,

and so we use simulation to generate 106 imposter similarity scores {G(1)
i , G

(2)
i }106

i=1, and for each k let

t2k be the 1-FAR2k quantile of the empirical distribution of {G(1)
i + G

(2)
i }106

i=1. This procedure yields

t2k = (54.60, 53.68, 50.80, 48.37, 46.01, 43.83, 42.42) for k = 1, . . . , 7. Plugging these estimates of t1k and

t2k into the objective function, we solve (5) as an unconstrained optimization problem

min
µ,τ,σ,δ,s

7∑
k=1

(
F1(t1k)− FRR1k

FRR1k

)2

+
7∑
k=1

(
F1m(t1k)− FRR1mk

FRR1mk

)2

+
7∑
k=1

(
F2m(t2k)− FRR2mk

FRR2mk

)2

. (54)

Finally, note that solving the optimization problem requires an initial solution (µ0, τ0, σ0, δ0, s0). As

an initial guess, because the similarity scores are normalized to a 100-point scale, we set the lognormal

median, eµ0 , equal to 50 to obtain µ0 = ln 50. For (τ0, σ0, s0), we use the estimates of (τ, σ, s) from

the solution of (1)-(2). As noted before, although the experimental setup of (1)-(2) used to estimate

(c1, . . . , c10) differs from that used to estimate all other parameters, we expect these values to provide a

good starting point. Also, recall from §1.3 that the solution of (1)-(2) provides no information about δ.

We expect δ to be negative but close to zero because it should be much smaller than µ. Therefore, we
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set δ0 equal to 0. Finally, the entire stage 1 and stage 2 procedure is repeated multiple times, with each

run (except the first) using the optimized values from the previous run as the inital solution.

2 Iris Parameter Estimation

The data are described in §2.1, mathematical expressions for FRR and FAR are derived in §2.2 and the

iris parameters are estimated in §2.3.

2.1 Data

The data for our iris parameters are taken from [9]. Although single- and dual-eye cameras are tested

in [9], we restrict ourselves to the dual-eye experiments because they achieved better performance and

smaller delays than the single-eye experiments. The relevant data are in Table 8 and Fig. 13 of [9]:

Fig. 13 gives four points on the FRR vs. FAR curve, denoted by (FRR2j ,FAR2j), j = 1, . . . , 4, which

consider two attempts of two (left and right) irises, and Table 8 fixes FAR1 = 10−6 and provides the

value FRR1 for one attempt of both irises. When multiple attempts are taken of an iris, the maximum

similarity score across attempts is used. In addition, the fusion of two irises is the maximum of the two

similarity scores; i.e., although fingers are fused with the sum, irises are fused with the maximum in the

UIDAI experiments. Each attempt in [9] corresponds to using the first image that meets the quality

threshold or the best among three images, whichever happens first. However, because this process is

used during enrollment and during each verification, we do not attempt to model the details within an

attempt. These experiments use four types of dual-eye cameras, and then discard one type as not being

good, and hence report results on the average of three types of good cameras. For two attempts of two

fingers (i.e., Fig. 13 of [9]), we also know that for l = 4, 5, 6, the threshold values t̂4 = 27, t̂5 = 36 and

t̂6 = 46 generate the FAR values FARl = 10−l.

These experiments exclude the 0.33% of people whose iris images could not be acquired, defined as

having the image not be usable for at least four of the eight single-eye and dual-eye cameras tested [9].

As in the fingerprint case, we consider two scenarios: the 0.33% are omitted and the five FRR values are

used directly in the exclusion case, and in the inclusion scenario we assume a failure-to-acquire rate of

0.0033 and use the relationships FRR=FTA+FNMR(1-FTA) and FAR=FMR(1-FTA).



18

2.2 Analysis

We now derive expressions for FRR1, FAR1, FRR2j and FAR2j . By construction, we know that for

genuine scores,

 Z̃11

Z̃12

 =

 X̃11 + γ̃11

X̃12 + γ̃12

 ∼ N

 µ11 + ψ

µ11 + ψ

 ,

 σ2
11 + β2 ρσ2

11

ρσ2
11 σ2

11 + β2


 . (55)

Because iris fusion is performed via the maximum, it follows that for the unknown threshold t1 used to

produce (FRR1,FAR1), FRR1 is

F1I(t1) = P (Z11 < t1, Z12 < t1) = Φ2

(
ln t1 − µ11 − ψ√

σ2
11 + β2

,
ln t1 − µ11 − ψ√

σ2
11 + β2

;
σ2

11ρ

σ2
11 + β2

)
, (56)

where Φ2 (x, y; ρ) is the bivariate CDF of two standard normal variables with correlation coefficient ρ.

The independence of the imposter similarity scores for the left and right irises implies that

FAR1 = 1− Φ2

(
ln t1 − µGI

σGI

)
. (57)

When there are two attempts of each iris, we let Z̃im = X̃i + maxk=1,2 γ̃ik and let t2j be the unknown

threshold corresponding to (FRR2j ,FAR2j) for j = 1, . . . , 4. We use Clark’s method to approximate

maxk=1,2 γ̃ik as a normal random variable with mean ψ2 , ψ + 1√
π
β and variance β̃2 , π−1

π β2, which

implies that FRR2j is

F2I(t2j) = P (Z11,m < t2j , Z12,m < t2j) = Φ2

 ln t2j − µ11 − ψ2√
σ2

11 + β̃2

,
ln t2j − µ11 − ψ2√

σ2
11 + β̃2

;
σ2

11ρ

σ2
11 + β̃2

 . (58)

Because we ignore measurement noise, the FAR2j values are also given by (57):

FAR2j = 1− Φ2

(
ln t2j − µGI

σGI

)
for j = 1, . . . , 4. (59)

2.3 Parameter Estimation

We have seven parameters to estimate: µ11, σ11, ρ, ψ, β, µGI , σGI . The parameters µ11 and ψ appear in

equations (56) and (58) as µ11 +ψ, and hence cannot be individually determined. We arbitrarily assume
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ψ = 0, leaving us with six parameters. We initially estimate the imposter parameters µGI and σGI using

the three threshold values for three specific FAR values, which yields a negative mean score (µGI = −1.23,

σGI = 0.53), which in turn generate extremely large estimates of µ11, σ11 and b. Consequently, we also

estimate µGI and σGI from Hamming distance data in [10], where the best camera has a Hamming

distance distribution with mean 0.456 and standard deviation 0.0214. Assuming that the similarity score

equals 100 times 1 minus the Hamming distance, we obtain µGI = 4.00 and σGI = 0.039. Although both

pairs of estimates lead to comparable fits to the FRR vs. FAR curves, and we are only interested in the

right tail of the imposter distribution (and the left tail of the genuine distribution), we nonetheless use

the latter approach so that the parameter values make more intuitive sense.

Solving equations (57) and (59) for the thresholds t1 = exp(µGI + σGIΦ
−1(
√

1− FAR1)) and t2j =

exp(µGI + σGIΦ
−1(
√

1− FAR2j)), and substituting these thresholds into (56) and (58) yield our least

squares problem for the remaining four parameters:

min
µ11,σ11,ρ,β

(
F1I(µGI + σGIΦ

−1(
√

1− FAR1))− FRR1

FRR1

)2

+

4∑
j=1

(
F2I(µGI + σGIΦ

−1(
√

1− FAR2j))− FRR2j

FRR2j

)2

. (60)

However, the solution to (60) turns out to be indeterminable: many combinations of σ11, β, ρ can give

the same result. Fig. 6 of [11] allows us to roughly estimate ρ to be 0.6, and solving (60) for the

three remaining parameters leads to our final estimates (the optimal solution is very insensitive to 1000

randomly-generated starting points).

3 Proposed Policies

We consider single-stage policies in §3.1 and two-stage policies in §3.2.

3.1 Single-stage Policies

A single-stage policy takes as input a resident’s observed log similarity scores during BFD and BID,

Ỹ = (Ỹ1, . . . , Ỹ12), and chooses to acquire a subset S of the 10 fingers, along with either neither or both

irises (due to the use of a dual-eye camera). We then observe the new similarity scores Z̃ for the acquired

subset and make an accept/reject decision (i.e., deem that the resident is genuine or an imposter). Our
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overall goal is to minimize the FRR subject to constraints on the FAR and average delay.

Because this problem is difficult to solve, we make several simplifying assumptions. First, we solve

this problem for each individual resident because we cannot easily compute the expectation over the

distribution of (Ỹ , Z̃). In particular, we require that each resident’s FAR is equal to a specified value p.

Second, it is much easier to consider a delay penalty than a delay constraint, and so we add the delay

penalty λ̃(cF |S|+ cII11), where λ̃ is the Lagrange multiplier associated with the delay constraint, |S| is

the number of fingers acquired, I11 is the indicator function for acquiring the irises, cI is the variable

delay for the irises and cF is the variable delay per finger. With these simplifications, our problem can

be formulated as

min
S⊆{1,...,10},I11,t

FRR + λ̃(cF |S|+ cII11) (61)

subject to FAR = p. (62)

Overview. We describe our approach to analyzing (61)-(62) in five steps. Let H0 denote the null

hypothesis that the resident is an imposter and H1 be the alternative hypothesis that the resident is

genuine. In step 1, we follow [13] and construct the likelihood ratio L =
fH1

(Z̃)

fH0
(Z̃)

, where fH1
(Z̃) and

fH0(Z̃) are the PDFs of the observed log similarity scores Z̃ under the respective hypotheses. The

Neyman-Pearson lemma states that the form of the optimal policy is to accept the resident as genuine

(i.e., reject H0) if L > t for some threshold t and reject the resident (i.e., accept H0) if L < t. In step

2, we solve for the threshold t by equating the FAR, which is P (L > t|H0), to the pre-specified value p.

In step 3, we calculate the FRR, which is P (L < t|H1). In step 4, we observe that the 10 fingers can be

ranked according to a simple rule, which greatly simplifies the analysis. In step 5, we solve (61)-(62).

The Likelihood Ratio. Until step 4, we assume that the |S| fingers acquired are indexed by i =

1, . . . , |S|, so that Z̃ = (Z̃1, . . . , Z̃|S|) if I11 = 0 and Z̃ = (Z̃1, . . . , Z̃|S|, Z̃11, Z̃12) if I11 = 1. Due to

the independence of fingerprints and iris, we perform four analyses to obtain the likelihood ratio: under

hypotheses H0 and H1, we find the conditional distribution of (Z̃1, . . . , Z̃|S|) given (Ỹ1, . . . , Ỹ10) and the

conditional distribution of (Z̃11, Z̃12) given (Ỹ11, Ỹ12).

Under hypothesis H1 that the resident is genuine, Prop. 3.13 in [5] implies that the distribution of θ
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conditioned on observing the BFD scores (Ỹ1, . . . , Ỹ10) is θ|Ỹ ∼ N (µθ, σ
2
θ), where

µθ =
µ/τ2 +

∑10
i=1(Ỹi − δ − µ3)ci/(σ

2 + σ2
3)

1/τ2 +
∑10
i=1 c

2
i /(σ

2 + σ2
3)

, (63)

σ2
θ ,

1

1/τ2 +
∑10
i=1 c

2
i /(σ

2 + σ2
3)
. (64)

Because σθ � µθ for our parameter values (e.g., for the exclusion scenario, µθ ≈ 4.1 depending on

the Ỹi values, and σθ = 0.36), we approximate the distribution θ|Ỹ by its mean µθ. Under H1, this

approximation along with (20)-(21) imply that Z̃i ∼ N (µi + δ, σ̂2 + s2) are conditionally independent for

i = 1, . . . , |S|, where

µi =
ciµθ/σ

2 + (Ỹi − δ − µ3)/σ2
3

1/σ2 + 1/σ2
3

. (65)

To find the conditional distribution of (Z̃11, Z̃12) given (Ỹ11, Ỹ12) under hypothesis H1, we first require

the joint distribution of (X̃11, X̃12, Ỹ11, Ỹ12). Let us define

µX ,

µ11

µ11

 , ΣXX , σ2
11

1 ρ

ρ 1

 , (66)

µY ,

µ11 + ψ

µ11 + ψ

 , ΣY Y ,

σ2
11 + β2 ρσ2

11

ρσ2
11 σ2

11 + β2

 . (67)

Recalling that (Ỹ11, Ỹ12) and (Z̃11, Z̃12) are identically distributed, we find that (55) implies



X̃11

X̃12

Ỹ11

Ỹ12


∼ N


µX
µY

 ,

ΣXX ΣXX

ΣXX ΣY Y


 , (68)

after noting that cov(X̃12, Ỹ12)=cov(X̃11, Ỹ11)=var(X̃11) = σ2
11 and cov(X̃12, Ỹ11)=cov(X̃11, Ỹ12) =cov(X̃11, X̃12) =

ρσ2
11. Using (68) and Prop. 3.13 in [5], we find that (X̃11, X̃12) given (Ỹ11, Ỹ12) is distributed as
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N
(
µX|Y ,ΣX|Y

)
, where

µX|Y , µX + ΣXXΣ−1
Y Y


Ỹ11

Ỹ12

− µY
 ,

= µX + σ2
11

1 ρ

ρ 1

 1

det(ΣY Y )

σ2
11 + β2 −ρσ2

11

−ρσ2
11 σ2

11 + β2


Ỹ11 − (µ11 + ψ)

Ỹ12 − (µ11 + ψ)

 ,

= µX +
σ2

11

(σ2
11 + β2)2 − ρ2σ4

11

1 ρ

ρ 1


σ2

11 + β2 −ρσ2
11

−ρσ2
11 σ2

11 + β2


 Ỹ11 − (µ11 + ψ)

Ỹ12 − (µ11 + ψ),


=

µ11

µ11

+
σ2

11

(σ2
11 + β2)2 − ρ2σ4

11

(1− ρ2)σ2
11 + β2 ρβ2

ρβ2 (1− ρ2)σ2
11 + β2


Ỹ11 − (µ11 + ψ)

Ỹ12 − (µ11 + ψ)

 ,

(69)

and

ΣX|Y , ΣXX − ΣXXΣ−1
Y Y ΣXX ,

= ΣXX(I − Σ−1
Y Y ΣXX),

= ΣXX

I − σ2
11

(σ2
11 + β2)2 − ρ2σ4

11

σ2
11 + β2 −ρσ2

11

−ρσ2
11 σ2

11 + β2


1 ρ

ρ 1


 ,

= ΣXX

I − σ2
11

(σ2
11 + β2)2 − ρ2σ4

11

(1− ρ2)σ2
11 + β2 ρβ2

ρβ2 (1− ρ2)σ2
11 + β2


 ,

= σ2
11

1 ρ

ρ 1

− σ4
11

(σ2
11 + β2)2 − ρ2σ4

11

(1− ρ2)σ2
11 + (1 + ρ2)β2 ρ[(1− ρ2)σ2

11 + 2β2]

ρ[(1− ρ2)σ2
11 + 2β2] (1− ρ2)σ2

11 + (1 + ρ2)β2

 .

(70)

It follows by (55) and (69) that (Z̃11, Z̃12) given (Ỹ11, Ỹ12) is distributed as N (µI ,ΣI), where

µI , µX|Y +

ψ
ψ

 , ΣI , ΣX|Y + β2I. (71)
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Substituting from (69) and simplifying, we get

µI =

w1Ỹ11 + w2Ỹ12 + (1− w1 − w2)(µ11 + ψ)

w1Ỹ12 + w2Ỹ11 + (1− w1 − w2)(µ11 + ψ)

 , (72)

where

w1 ,
(1− ρ2)σ4

11 + σ2
11β

2

(σ2
11 + β2)2 − ρ2σ4

11

, w2 ,
ρσ2

11β
2

σ4
Z − ρ2σ4

11

. (73)

Similarly, substituting from (70) and simplifying, we get

ΣI = σ2
I

 1 ρI

ρI 1

 , (74)

where

σ2
I ,

β2[β4 + 2(1− ρ2)σ4
11 + 3σ2

11β
2]

(σ2
11 + β2)2 − ρ2σ4

11

, ρI ,
ρσ2

11β
2

β4 + 2(1− ρ2)σ4
11 + 3σ2

11β
2
. (75)

Let Z̃I = (Z̃11, Z̃12)T and define the centered variables Z̃cI = Z̃I − µI . It follows that the numerator

of the likelihood ratio L is given by

fH1
(Z̃) =

 |S|∏
i=1

1√
2π(σ̂2 + s2)

e−(Z̃i−µi−δ)2/2(σ̂2+s2)

 I11∏
j=1

1

2πσ2
I

√
1− ρ2

I

exp

{
−

(Z̃cI )
TΣ−1

I Z̃cI
2

} ,

(76)

where (here and elsewhere) we use the convention that the empty product equals 1.

Let eT = (1 1) and I be the 2×2 identity matrix. Under hypothesisH0 that the resident is an imposter,

we have that Z̃i are iid N (µG, σ
2
G) for i = 1, . . . , |S| and Z̃I ∼ N (eµGI ,ΣGI), where ΣGI , σ2

GII. Define

the centered variables Z̃cGI = Z̃I − eµGI . It follows that the denominator of the likelihood ratio is

fH0
(Z̃) =

 |S|∏
i=1

1√
2πσG

e−(Z̃i−µG)2/2σ2
G

 I11∏
j=1

1

2πσ2
GI

exp

{
−

(Z̃cGI)
TΣ−1

GI Z̃
c
GI

2

} . (77)

Define the vector µ̄ , µI − µGI , so that Z̃cGI = Z̃cI + µ̄. By (76)-(77), the log likelihood ratio (i.e.,
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lnL) is given by

|S| lnω1 +

|S|∑
i=1

[
(Z̃i − µG)2

2σ2
G

− (Z̃i − µi − δ)2

2(σ̂2 + s2)

]
+ I11

(
ω2 −

(Z̃cI )
TΣ−1

I Z̃cI
2

+
(Z̃cI + µ̄)TΣ−1

GI(Z̃
c
I + µ̄)

2

)
,

(78)

where

ω1 ,
σG√
σ̂2 + s2

, (79)

ω2 , ln

[
σ2
GI

σ2
I

√
1− ρ2

I

]
. (80)

Choosing the Threshold t. The optimal decision rule dictates that we declare the resident to be

genuine if and only if L > t. We need the threshold t to satisfy FAR = P (L > t|H0) = p, which by (78)

can be written as

p =P

|S| lnω1 +

|S|∑
i=1

[
(Z̃i − µG)2

2σ2
G

− (Z̃i − µi − δ)2

2(σ̂2 + s2)

]

+I11

(
ω2 −

(Z̃cI )
TΣ−1

I Z̃cI
2

+
(Z̃cI + µ̄)TΣ−1

GI(Z̃
c
I + µ̄)

2

)
> ln t | H0

)
. (81)

Recall from (77) that under H0, Z̃i ∼ N (µG, σ
2
G) and iid for i = 1, . . . , |S|. Letting Ni , (Z̃i−µG)/σG ∼

N (0, 1) and simplifying the ith term inside the summation in (81), we have

(Z̃i − µG)2

2σ2
G

− (Z̃i − µi − δ)2

2(σ̂2 + s2)
=

1− ω2
1

2

(
Ni +

ω2
1

1− ω2
1

βi

)2

− ω2
1β

2
i

2(1− ω2
1)
, (82)

where

βi ,
µi + δ − µG

σG
for i = 1, . . . , |S|. (83)

Turning to the irises part of (81), we use the fact that the distribution of a definite quadratic form

of Gaussian variables, xTQx where Q � 0 and x ∼ Nr(µ,Σ), can be expressed as a positive linear

combination of independent non-central chi square random variables [14]. More specifically,

xTQx
d
=

r∑
i=1

λiy
2
i , (84)

where y ∼ Nr(PTA−1µ, I) are independent, A is defined by Cholesky’s decomposition of Σ = AAT , and
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λ = (λ1, . . . , λr) > 0 and the orthogonal matrix P are the eigenvalues and eigenvectors of ATQA. To be

able to apply this technique to the irises part of (81), we must satisfy

(Z̃cI + µ̄)TΣ−1
GI(Z̃

c
I + µ̄)− (Z̃cI )

TΣ−1
I Z̃cI = (Z̃cI + γ1)TQ1(Z̃cI + γ1) +K1 under H1, (85)

= (Z̃cGI + γ0)TQ0(Z̃cGI + γ0) +K0 under H0, (86)

for some vectors γ1, γ0, constants K1,K0, and definite matrices Q1, Q0. Note that if we can satisfy (85)

for some γ1,K1, and Q1, then (86) is easily satisfied for the choice of γ0 = γ1− µ̄,K0 = K1, and Q0 = Q1.

Thus, we concentrate on satisfying (85).

Expanding both sides of (85), we have

(Z̃cI )
T
(
Σ−1
GI − Σ−1

I

)
Z̃cI + 2µ̄eTΣ−1

GI Z̃
c
I + µ̄2eTΣ−1

GIe = (Z̃cI )
TQ1Z̃

c
I + 2γ1e

TQ1Z̃
c
I + γ2

1e
TQ1e+K1,

and matching coefficients gives

Q1 = Σ−1
GI − Σ−1

I , (87)

γ1 = [I − ΣGIΣ
−1
I ]−1µ̄, (88)

K1 = µ̄T [I − (I − Σ−1
I ΣGI)

−1]Σ−1
GI µ̄. (89)

To explicitly express these quantities in terms of our parameters, we first note that Σ−1
GI = I/σ2

GI

and (74) implies

Σ−1
I =

1

σ2
I (1− ρ2

I)

1 − ρI

−ρI 1

 , (90)

and hence

Σ−1
GI − Σ−1

I =

 1
σ2
GI
− 1

σ2
I (1−ρ2I)

ρI
σ2
I (1−ρ2I)

ρI
σ2
I (1−ρ2I)

1
σ2
GI
− 1

σ2
I (1−ρ2I)

 , (91)

eTΣ−1
GIe =

2

σ2
GI

, and eTΣ−1
I e =

2

σ2
I (1 + ρI)

. (92)
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Substituting (91)-(92) into (87), (88) and (89), and from our discussion below (86), we get

Q1 =

 1
σ2
GI
− 1

σ2
I (1−ρ2I)

ρI
σ2
I (1−ρ2I)

ρI
σ2
I (1−ρ2I)

1
σ2
GI
− 1

σ2
I (1−ρ2I)

 = Q0,

γ1 =
µ̄

1− σ2
GI

σ2
I (1−ρ2I)

, γ0 =
µ̄

σ2
I (1−ρ2I)

σ2
GI

− 1
, (93)

K1 =
−2µ̄2

σ2
Z(1− ρ2

I)− σ2
GI

= K0.

Before applying this result, we check the conditions for Q1 to be definite. Because its off-diagonal entries

are positive, −Q1 � 0 is ruled out. We can only have Q1 � 0, which from (93) requires that

1

σ2
GI

>
1

σ2
I (1− ρ2

I)
, and (94)

1

σ2
GI

− 1

σ2
I (1− ρ2

I)
>

ρI
σ2
I (1− ρ2

I)
⇐⇒ 1

σ2
GI

>
1

σ2
I (1− ρI)

. (95)

Because 0 < ρI < 1⇒ 1
1−ρI >

1
1−ρ2I

, (95) implies (94). Thus, the only condition we require for Q1 to be

(positive) definite is that

σ2
I (1− ρI) > σ2

GI , (96)

which holds in our case.

Recall that under H0, Z̃I ∼ N (eµGI ,ΣGI). We are now in a position to use (86) to express the irises

part of (81) by

I11

(
ω2 +

(Z̃cGI + γ0)TQ0(Z̃cGI + γ0) +K0

2

)
, (97)

which by (84) equals

I11

(
ω2 +

K0

2
+

∑2
i=1 λ̂iŷ

2
i

2

)
, (98)

where, from the discussion below (84), we have that ŷ = (ŷ1 ŷ2)T ∼ N (µ̂y, I) (where µ̂y is defined below),

Â is obtained using Cholesky’s decomposition of ΣGI = ÂÂT , and λ̂ = (λ̂1 λ̂2)T and P̂ are the eigenvalues

and eigenvectors of ÂTQ0Â. Explicitly evaluating these quantities, we have Â = σGII, P̂ = 1√
2

1 1

1 −1

,
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and the final parameters of interest

λ̂1 = 1− σ2
GI

σ2
I (1 + ρI)

, (99)

λ̂2 = 1− σ2
GI

σ2
I (1− ρI)

, (100)

µ̂y =

µ̂y1

µ̂y2

 ,
1√

2σGI

1 1

1 −1

 [(I − ΣGIΣ
−1
I )−1 − I]µ̄. (101)

By (101) we can re-express (98) as

I11

(
ω2 +

K0

2
+
λ̂1(N11 + µ̂y1)2 + λ̂2(N12 + µ̂y2)2

2

)
, (102)

where N11 and N12 are iid N (0, 1).

Substituting (82) and (102) into (81) and rearranging yields

p = P

1− ω2
1

2

|S|∑
i=1

(
Ni +

ω2
1

1− ω2
1

βi

)2

+ I11

[
λ̂1

2
(N11 + µ̂y1)2 +

λ̂2

2
(N12 + µ̂y2)2

]
> t̂

 , (103)

where

t̂ , ln t− |S| lnω1 +
ω2

1

2(1− ω2
1)

|S|∑
i=1

β2
i − I11

(
ω2 +

K0

2

)
. (104)

The quantity on the left side of the inequality in (103) is a positive linear combination of independent

non-central chi-squared random variables. We analyze this quantity using a fast and accurate approxi-

mation in [15], which is a generalization of a result for a non-central chi-squared random variable in [16].

The simpler result in [16] can be used directly if I11 = 0; here we apply the result in [15] to the general

case.

Let Qk =
∑k
j=1 cj(xj + aj)

2 where i.i.d. xj ∼ N (0, 1), 1 ≤ j ≤ k, and cj > 0. Further, let

θs ,
∑k
j=1 c

s
j(1 + sa2

j ), s ≥ 0 and h , 1 − 2θ1θ3/3θ
2
2. By [15], we have (Qk/θ1)h

d
≈N

(
µQ, σ

2
Q

)
, where

µQ , 1 + θ2h(h−1)
θ21

and σ2
Q , 2θ2h

2

θ21
. We did not include the next higher order terms of the approximation

in [16] because they did not improve the accuracy in the right tail in our numerical calculations. Applying
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this approximation to (103) yields

P
{
Qk > t̂

}
= p, (105)

⇒ P
{

(Qk/θ1)h > (t̂/θ1)h
}
≈ Φ̄

(
(t̂/θ1)h − µQ

σQ

)
= p, (106)

⇒ t̂ ≈ θ1

[
µQ + σQΦ̄−1(p)

]1/h
. (107)

Calculating the FRR. Our analysis of FRR follows the same sequence of steps as our analysis of FAR.

Equation (78) implies that the FRR, which is P (L < t|H1), can be expressed as

FRR =P

|S| lnω1 +

|S|∑
i=1

[
(Z̃i − µG)2

2σ2
G

− (Z̃i − µi − δ)2

2(σ̂2 + s2)

]

+I11

(
ω2 −

(Z̃cI )
TΣ−1

I Z̃cI
2

+
(Z̃cI + µ̄)TΣ−1

GI(Z̃
c
I + µ̄)

2

)
< ln t | H1

)
. (108)

Recall that Z̃i ∼ N (µi + δ, σ̂2 + s2) are conditionally independent for i = 1, . . . , |S| under hypothesis

H1. If we define Mi , (Z̃i − µi − δ)/
√
σ̂2 + s2, then Mi ∼ N (0, 1). Simplifying the ith term inside the

summation in (108) yields

(Z̃i − µG)2

2σ2
G

− (Z̃i − µi − δ)2

2(σ̂2 + s2)
=

1− ω2
1

2ω2
1

(
Mi +

ω1βi
1− ω2

1

)2

− ω2
1β

2
i

2(1− ω2
1)
. (109)

Recall that under hypothesis H1, Z̃cI ∼ N (0,ΣI). Repeating the steps used to derive the FAR, we

use (85) to express the irises part of (108) as

I11

(
ω2 +

(Z̃cI + γ1)TQ1(Z̃cI + γ1) +K1

2

)
, (110)

which by (84) equals

I11

(
ω2 +

K1

2
+

∑2
i=1 λ̄iȳ

2
i

2

)
, (111)

where from the discussion below (84), we have that ȳ = (ȳ1 ȳ2)T ∼ N (µ̄y, I), Ā is obtained using

Cholesky’s decomposition of ΣI = ĀĀT , and λ̄ = (λ̄1 λ̄2)T and P̄ are the eigenvalues and eigenvectors
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of ĀTQ1Ā. Explicitly evaluating these, we have

Ā = σI

 1 0

ρI
√

1− ρ2
I

 , P̄ =
1√
2

√1 + ρI
√

1− ρI
√

1− ρI −
√

1 + ρI

 , (112)

and the final parameters of interest

λ̄1 =
σ2
I (1 + ρI)

σ2
GI

− 1, (113)

λ̄2 =
σ2
I (1− ρI)
σ2
GI

− 1, (114)

µ̄y =

µ̄y1

µ̄y2

 ,
1√

2(1− ρ2
I)σI

√1− ρI
√

1− ρI
√

1 + ρI −
√

1 + ρI

 [I − ΣGIΣ
−1
I ]−1µ̄. (115)

By (115), we can re-express (111) as

I11

(
ω2 +

K1

2
+
λ̄1(M11 + µ̄y1)2 + λ̄2(M12 + µ̄y2)2

2

)
, (116)

where M11 and M12 are iid N (0, 1).

Substituting (109) and (116) into (108) and rearranging yields

FRR = P

1− ω2
1

2ω2
1

|S|∑
i=1

(
Mi +

ω1

1− ω2
1

βi

)2

+ I11

[
λ̄1

2
(M11 + µ̄y1)2 +

λ̄2

2
(M12 + µ̄y2)2

]
< t̄

 , (117)

where

t̄ , ln t− |S| lnω1 +
ω2

1

2(1− ω2
1)

|S|∑
i=1

β2
i − I11

(
ω2 +

K1

2

)
. (118)

As in (105)-(106), we use the approximation in [15], but we now include the higher order terms in [16] to

improve the accuracy in the left tail. As before, noting that the random variable inside the probability

in (117) is of the form Q̃k =
∑k
j=1 cj(xj+aj)

2 where xj ∼ N (0, 1) iid for 1 ≤ j ≤ k with cj > 0, and defin-

ing θ̃s and h̃ analogously, we have (Q̃k/θ̃1)h̃
d
≈N

(
µ̃Q, σ̃

2
Q

)
, where µ̃Q , 1 + θ̃2h̃(h̃−1)

θ̃21
− θ̃22 h̃(h̃−1)(2−h̃)(1−3h̃)

2θ̃41

and σ̃2
Q , 2θ̃2h̃

2

θ̃21

(
1− θ̃2(1−h̃)(1−3h̃)

2θ̃21

)2

. Applying this approximation directly to compute the probabil-

ity (117), however, proves inaccurate for our application. The quality of this approximation deteriorates

with increasing variation among the cj ’s [15], and the cj ’s corresponding to the iris terms, λ̄1

2 and λ̄2

2 ,
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which are both of the same order, are significantly larger than
1−ω2

1

2ω2
1

, which is the cj for the finger

terms. To circumvent this problem, we split Q̃k as Q̃Fk + Q̃Ik, where Q̃Fk (Q̃Ik) consists of the finger (iris)

terms exclusively and is thus approximated accurately using the scheme described above. To compute

FRR=P(Q̃Fk + Q̃Ik < t̄) using the approximated independent marginals of Q̃Fk and Q̃Ik is analytically

intractable, so we instead use the trapezoidal approximation with Ñ terms:

P (Q̃Fk + Q̃Ik < t̄) ≈
Ñ∑
i=1

P
(
Q̃Fk ∈

[
(i− 1)t̄/Ñ , it̄/Ñ

]
, Q̃Ik < (1− i/Ñ)t̄

)

=

Ñ∑
i=1

[
P
(
Q̃Fk < it̄/Ñ

)
− P

(
Q̃Fk < (i− 1)t̄/Ñ

)]
P
(
Q̃Ik < (1− i/Ñ)t̄

)
, (119)

where the equality follows from the independence of Q̃Fk and Q̃Ik. Each term in (119) may be computed

based on our approximation, as was done in (105)-(106). We chose a value of Ñ = 20 in our numerical

computations.

Ranking the Fingers. Until now, our analysis has ignored the decision of which |S| fingers to acquire.

Rather than evaluating all
(

10
|S|
)

possibilities, it turns out that there is an optimal ranking of the fingers,

regardless of the value of |S|. To derive this ranking, first fix the number of fingers |S| that may be scanned.

Next, note that the distribution of the first random variable in (117) is non-central chi squared with |S|

degrees of freedom and non-centrality parameter
(

ω2
1

1−ω2
1

)2∑|S|
i=1 β

2
i ; thus, the value of t̂ satisfying (104)

depends on (β1, . . . , β|S|) only via
∑|S|
i=1 β

2
i . Similarly, the first non-central chi-squared random variable

in (117) has |S| degrees of freedom and noncentrality parameter λ′ ,
(

ω1

1−ω2
1

)2∑|S|
i=1 β

2
i ; combining with

the conclusion for t̂, this implies that the FRR depends on (β1, . . . , β|S|) only via
∑|S|
i=1 β

2
i .

Next, we note that

√∑|S|
i=1 β

2
i is the scaled Euclidean distance between the means of the log similarity

scores of fingers under the two hypotheses H0 and H1. Therefore, holding all else fixed, a higher
∑|S|
i=1 β

2
i

implies a greater difference – and hence a greater ability to distinguish – between the two hypotheses;

this should reflect in a lower FRR at the same level of FAR. It is easy to prove that this argument is

always true when the standard deviations under the hypotheses H0 and H1 are identical, and we are

close to this case as the ratio of these standard deviations is 0.87 for the exclusion scenario and 0.75 for

the inclusion scenario. Further, even when this ratio is away from 1, the conclusion still holds at levels

of FAR that are small enough, such as those in our case.

It follows that if we are to acquire exactly |S| fingers to minimize FRR, it is nearly optimal to choose
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those with the |S| highest values of β2
i , or equivalently |βi|. This argument does not depend on the value

of |S|, and hence the ranking based on |βi| does not depend on |S|.

Because the Neyman-Pearson lemma considers a deviation of the log similarity score away from µG

– whether positive or negative – as a departure from the null hypothesis, it allows for βi < 0. However,

it will typically be the case that βi > 0 because the expected value of the log similarity score should be

higher when the match is genuine than when the match is between two different residents, which implies

that µi + δ > µG. Hence, for practical purposes, we choose to rank the fingers by βi rather than |βi|,

which by (83) is equivalent to ranking by µi; by (65), this ranking reduces to
µθσ

2
3

σ2 ci + Ỹi, which depends

on both the population-wide average ci of finger i and the observed similarity score Ỹi of finger i.

Solving (61)-(62). For each resident, we define the subscripts [i] = 1, . . . , 10 such that µ[1] ≥ µ[2] ≥

· · · ≥ µ[10]. This ranking of the fingers reduces the optimization problem in (61)-(62) to

min
|S|,I11

FRR + λ̃(cF |S|+ cII11), (120)

where FRR is given in (117)-(119). This optimization problem can be easily solved (it has only 21 feasible

solutions).

3.2 Two-stage Policies

In general, a two-stage policy takes as input a resident’s observed log similarity scores during BFD and

BID, Ỹ = (Ỹ1, . . . , Ỹ12), and chooses to acquire in the first stage a subset S1 of the 10 fingers, along with

either neither or both irises (due to the use of a dual-eye camera). We then observe the new similarity

scores Z̃(1) for the acquired subset and either accept the resident, reject the resident or continue to the

second stage to acquire more biometrics. If the second stage is reached, it chooses to acquire a subset

of the 10 fingers and both irises that have not already been used in the first stage. We then observe the

new similarity scores Z̃(2) for the acquired subset of second stage and make an accept/reject decision.

Because this problem is difficult to solve, we only consider three restrictive classes of policies. In the

first class, we consider the iris-finger policy, in which we acquire both irises and no fingers in the first

stage, and no irises and a subset of the 10 fingers in the second stage. Next we consider the finger-iris

policy, in which, analogous to the iris-finger policy, we may acquire only fingers in the first stage and only

both irises in the second stage. Finally, the least restrictive class we consider is the either-other policy,
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that permits the use of any one mode of biometrics – either fingers or irises – in the first stage and the

use of only the other mode in the second stage.

We also make several simplifying assumptions. As before for the single-stage policies, we impose

the same FAR constraint for each resident and we account for the constraint on average delay using an

additive delay penalty with Lagrange multiplier λ̃. In addition, if the policy proceeds to the second stage,

we impose that the second-stage FAR be independent of the observed similarity scores Z̃(1) from the first

stage. Note that the second-stage FAR may still be different across residents. This assumption, while

suboptimal, considerably simplifies the analysis of the policy and makes it possible to express the optimal

policy in a compact form.

As before, our overall goal is to minimize the sum of FRR and the delay penalty subject to a constraint

on the FAR. We note that in contrast to the single-stage policies, the delay in the two-stage case is variable,

depending on whether or not the first-stage similarity scores are inconclusive in making an accept/reject

decision. Therefore, we now use λ̃ times the expected delay as the delay penalty in our objective function,

where the expectation is taken under the hypothesis that the resident is genuine.

Overview. In our analysis of two-stage policies, we re-use much of the notation from §3.1 but add a

subscript or superscript to denote the stage. Let the biometric acquisition decisions be given by Si and

I
(i)
11 for stage i = 1, 2, let Z̃(i) be the set of similarity scores for the biometrics acquired in stage i, and

let Li be the likelihood ratio based on the similarity scores acquired only in stage i. We change notation

for the thresholds (Fig. 1 in the main text) and let tU and tL be the upper and lower thresholds in stage

1 and let t2 be the threshold for stage 2. Thus, if L1 < tL we reject the person as imposter, if L1 > tU

we accept the person as genuine, and we otherwise go to stage 2. In stage 2, we compare L2 with t2 to

make the accept/reject decision (we prove in our analysis that it is optimal under our assumptions to

discard L1 when making the stage 2 decision). Finally, we define Di(Si, I
(i)
11 ) to be the delay due to the

biometrics acquired in stage i, as given in Table 2 of the main text.

As mentioned earlier, we analyze three classes of two-stage policies which differ in the restrictions

that they place on the set of feasible biometrics (S1, I
(1)
11 , S2, I

(2)
11 ) that may be acquired. We define these
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feasible sets as

Ciris−finger =
{(
S1, I

(1)
11 , S2, I

(2)
11

)
: S2 ⊆ {1, . . . , 10}, I(1)

11 ∈ {0, 1}, |S1| = 0, I
(2)
11 = 0

}
,

Cfinger−iris =
{(
S1, I

(1)
11 , S2, I

(2)
11

)
: S1 ⊆ {1, . . . , 10}, I(2)

11 ∈ {0, 1}, |S2| = 0, I
(1)
11 = 0

}
,

Ceither−other = Ciris−finger ∪ Cfinger−iris. (121)

Note that for each of these policies, by construction, the mode of biometrics acquired in stage 2 differs

from that in stage 1. By our assumption of independence between iris and finger scores, this implies that

Z̃(1) and Z̃(2) (and hence, L1 and L2) are independent – a fact that will be harnessed in our analysis.

All classes of two-stage policies are now analyzed under a unified framework in which we fix the policy

class and refer to the corresponding feasible set in (121) by C. Our strategy to find the optimal policy

is divided in two steps: (i) fix the set of biometrics (S1, I
(1)
11 , S2, I

(2)
11 ) acquired in each stage and find

the optimal policy parameters (tL, tU , t2) as well as the optimal objective value, and (ii) determine the

optimal set of biometrics to acquire by making comparisons across their objective values. By ranking the

fingers by βi as in the single-stage policies, we need to consider only 10, 10 and 20 different feasible sets

for the iris-finger, finger-iris and either-other policy, respectively.

We also provide implementation details that facilitated effective computation of these policies.

Optimal Policy for a Fixed Set of Biometrics. In the first step, we fix the set of biometrics

(S1, I
(1)
11 , S2, I

(2)
11 ) to be acquired in stage 1 and 2, and note an elementary but important fact: the

second-stage decision t2 will, in general, depend on the realized similarity scores Z̃(1) from stage 1 as

well as on the choice of tL and tU . Letting F = (tL, tU , Z̃
(1)) denote the information at the beginning

of stage 2 and F be the set of all possible values of F , we have that t2 is a real function on F ; i.e.,

t2(F ) ∈ R,∀F ∈ F . However, we shall prove shortly that under our restriction that the FAR in stage 2

be constant for all values of Z̃(1), it follows that t2(F ) is constant for all F with fixed tL, tU ; this allows

for any policy to be expressed in a compact form as a triplet (tL, tU , t2) ∈ R3.

We now write the expressions for FAR, FRR and the expected delay (D̄) in terms of (tL, tU , t2).

Defining S(F) to be the space of all real functions on F , we place no restrictions on t2 ∈ S(F). Let

t′2 be any real-valued function on F and define the function t2 such that t2(F ) = t′2(F )/L1,∀F ∈ F

(note that t2 is well-defined since L1 is a function of Z̃1, which is an element of F ). We know from the

Neyman-Pearson lemma that it is optimal to make the decisions in stage 1 based on L1 and those in
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stage 2 based on L1L2. Thus, we have

D̄ = D1(S1, I
(1)
11 ) + P (L1 ∈ [tL, tU ]|H1)D2(S2, I

(2)
11 ), (122)

FRR = P (L1 < tL|H1) + P (L1 ∈ [tL, tU ], L1L2 < t′2(F )|H1),

= P (L1 < tL|H1) + P (L1 ∈ [tL, tU ]|H1)P (L1L2 < t′2(F )|L1 ∈ [tL, tU ], H1),

= P (L1 < tL|H1) + P (L1 ∈ [tL, tU ]|H1)P (L2 < t2(F )|L1 ∈ [tL, tU ], H1),

= P (L1 < tL|H1) + P (L1 ∈ [tL, tU ]|H1)E
[
P (L2 < t2(F )|F,H1)

∣∣∣L1 ∈ [tL, tU ], H1

]
, (123)

FAR = P (L1 > tU |H0) + P (L1 ∈ [tL, tU ], L1L2 > t′2(F )|H0),

= P (L1 > tU |H0) + P (L1 ∈ [tL, tU ]|H0)P (L1L2 > t′2(F )|L1 ∈ [tL, tU ], H0),

= P (L1 > tU |H0) + P (L1 ∈ [tL, tU ]|H0)P (L2 > t2(F )|L1 ∈ [tL, tU ], H0),

= P (L1 > tU |H0) + P (L1 ∈ [tL, tU ]|H0)E
[
P (L2 > t2(F )|F,H0)

∣∣∣L1 ∈ [tL, tU ], H0

]
. (124)

Our goal is to solve

min
tL,tU∈R
t2∈S(F)

FRR + λ̃D̄

s.t. FAR = p. (125)

Substituting (122)-(124) into (125) yields

min
tL,tU∈R
t2∈S(F)

P (L1 < tL|H1) + λ̃D1(S1, I
(1)
11 )

+ P (L1 ∈ [tL, tU ]|H1)E
[
P (L2 < t2(F )|F,H1) + λ̃D2(S2, I

(2)
11 )
∣∣∣L1 ∈ [tL, tU ], H1

]
s.t. P (L1 > tU |H0) + P (L1 ∈ [tL, tU ]|H0)E

[
P (L2 > t2(F )|F,H0)

∣∣∣L1 ∈ [tL, tU ], H0

]
= p. (126)

Let us define the second-stage FAR by

p′ ,
p− P (L1 > tU |H0)

P (L1 ∈ [tL, tU ]|H0)
, (127)

which is only a function of tL and tU . Next, in (126), we move the minimization over t2 inside to
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equivalently obtain

min
tL,tU∈R

P (L1 < tL|H1) + λ̃D1(S1, I
(1)
11 ) (128)

+ P (L1 ∈ [tL, tU ]|H1)E
[

min
t2(F )∈R

P (L2 < t2(F )|F,H1) + λ̃D2(S2, I
(2)
11 )
∣∣∣L1 ∈ [tL, tU ], H1

]
s.t. E[P (L2>t2(F )|F,H0)|L1∈[tL,tU ],H0]=p′

.

Note that in the inner optimization problem, while the value of t2 may be optimized path by path

for each realized value of F , the constraint only applies in an average sense (i.e., on the expected value

over all realizations of F ∈ F). This makes it hard to solve for the optimal t2 ∈ S(F), and even if one

did, it would still be hard to evaluate the expectation in (128) in order to solve for the optimal tL and

tU in the outer optimization. For this reason, we impose that the constraint in (128) holds path by path,

i.e., P (L2 > t2(F )|F,H0) = p′ ∀F ∈ F . This is our aforementioned assumption to let the FAR in stage

2 be the same for all realizations of the stage 1 similarity scores Z̃(1). Further, the optimal threshold

t2(F ) now only depends on p′ which is only a function of tL and tU ; as a consequence, the optimal t2

does not depend on the stage 1 similarity score Z̃(1) and the optimal policy is characterized by the triplet

(tL, tU , t2) ∈ R3. Henceforth, we simply assume that t2 ∈ R.

We next exploit the independence between L2 (which is a function of Z̃(2)) and Z̃(1) as discussed

below (121). Using the fact that t2 is now just a policy constant, we can greatly simplify the expressions

for FRR and FAR in (123)-(124) to get

FRR = P (L1 < tL|H1) + P (L1 ∈ [tL, tU ]|H1)P (L2 < t2|H1), (129)

FAR = P (L1 > tU |H0) + P (L1 ∈ [tL, tU ]|H0)P (L2 > t2|H0). (130)

Using (127) and (130), we express the constraint FAR = p as P (L2 > t2|H0) = p′. Substituting this

and (129) in (125) yields the optimization problem that we finally solve:

min
tL,tU ,t2∈R

P (L1 < tL|H1) + λ̃D1(S1, I
(1)
11 ) + P (L1 ∈ [tL, tU ]|H1)

[
P (L2 < t2|H1) + λ̃D2(S2, I

(2)
11 )
]

s.t. P (L2 > t2|H0) = p′. (131)

To solve (131), we perform a grid search of (tL, tU ). At any estimate of this pair, the value of p′ is

implicitly defined, and t2 may then be obtained using the constraint.
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Before closing this discussion, we describe how to compute the probabilities in the objective function

of (131), as well as the procedure to invert the probability in the constraint to obtain t2. Recall that

the log likelihood, lnLi, is just the expression (78) with S, I11 and Z̃ substituted by Si, I
(i)
11 and Z̃(i),

for i = 1, 2. This enables us to use the machinery already developed in §3.1 to compute and invert

all the probabilities involved. Thus, to invert the constraint in (131) for a given p′, we note that it is

identical to (81) with S, I11, Z̃, t and p substituted by S2, I
(2)
11 , Z̃

(2), t2 and p′, and we follow the same

procedure to obtain t2. Next, by writing P (L1 ∈ [tL, tU ]|H1) as P (L1 < tU |H1) − P (L1 < tL|H1), we

express all probabilities in the objective function of (131) as P (Li < t|H1) for some t ∈ R and i = 1, 2.

Any probability of the form P (Li < t|H1) is identical to the right hand side of (108) with S, I11 and Z̃

substituted by Si, I
(i)
11 and Z̃(i), and it can be computed using the procedure to compute FRR laid out

there.

Optimal Set of Biometrics. Let (S1, I
(1)
11 , S2, I

(2)
11 ) ∈ C be the set of biometrics we choose to acquire

for a fixed two-stage policy. As we know how to compute the optimal parameters (tL, tU , t2) for a fixed

set of biometrics, computing the optimal objective value in (131) is straightforward. By choosing the set

(S1, I
(1)
11 , S2, I

(2)
11 ) ∈ C with the minimum optimal objective value, we obtain the optimal set of biometrics

to acquire. However, for each two-stage policy there are more than 1,000 feasible sets in C, which makes it

prohibitively expensive to compute the optimal parameters for each set. Fortunately, a major reduction

is possible by following the same line of arguments for ranking fingers as in §3.1.

Turning to the iris-finger policy, in which the fingers may be used in stage 2 only and the similarity

scores of fingers appear only in L2, we consider all sets of fingers S2, which have |S2| fingers. Next, we

fix the values of tL, tU in (131) so that p′ is now fixed. As noted earlier, lnL2 is just the expression (78)

with S, I11 and Z̃ substituted by S2, I
(2)
11 and Z̃(2). We already know from §3.1 that for a fixed FAR=

p′ = P (L2 > t2|H0), increasing
∑|S2|
i=1 β

2
i decreases the FRR= P (L2 < t2|H1), which in turn decreases

the objective function in (131). Therefore, for this value of tL and tU , it is optimal to rank the fingers

based on βi as before and to choose the set S2 consisting of the top |S2| fingers. Because the ranking

based on βi does not depend on the values of tL and tU , the set S2 of the top |S2| fingers provides the

lowest objective value in (131) among all sets with |S2| fingers. Because 1 ≤ |S2| ≤ 10, there are only 10

different sets S2 that we need to evaluate to arrive at the optimal set of biometrics to acquire.

For the finger-iris policy, we make a more fundamental argument because a direct comparison with the

single-stage case (as we did for the iris-finger policy) does not work due to the presence of the confounding
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terms P (L1 ∈ [tL, tU ]|Hi) in the FRR and FAR. Instead, we first note that the inference in the second

stage (using only irises) is independent of the choice of fingers in the first stage because the similarity

scores Z̃(1) are never used in stage 2. Hence, improving the inference in stage 1 by using the optimal set

of fingers can only lower the overall FRR for a given FAR. Next, following the line of arguments for the

single-stage case, we know that heuristically a higher
∑|S|
i=1 β

2
i provides a greater difference, and hence a

greater ability to discern, between the two hypotheses H0 and H1. Therefore, we rank the fingers based

on βi as before and choose the set S1 consisting of the top |S1| fingers, for fixed 1 ≤ |S1| ≤ 10, to improve

the inference in the first stage. As claimed earlier, among the sets with |S1| fingers, using S1 lowers the

overall FRR for the given FAR, and this fact allows us to make comparisons across just 10 sets to arrive

at the optimal set of biometrics to acquire.

Finally, it follows from the definition of Ceither−other in (121) that we only need to compare across 20

sets to obtain the optimal set of biometrics for the either-other policy: the best set S2 for the iris-finger

policy and the best set S1 for the finger-iris policy containing n fingers, for each 1 ≤ n ≤ 10.

Implementation Details. The computation of the optimal two-stage policies consumes significantly

more time than the single-stage policies. In contrast to an average computation time of 0.002 seconds

for determining the optimal parameters for the single-stage policies, the same step is ≈ 100 times slower

for the two-stage policies due to the numerical optimization step over tL and tU . Hence, it is important

to choose a good initial solution. We do this by first solving for the threshold t1 under the assumption

that it is never optimal to proceed to the second stage (i.e., tL = tU ), which amounts to computing the

single-stage optimal policy. We then use as initial solution tL = t1 − ε and tU = t1 + ε for a small value

ε > 0, which typically yields a smooth convergence. In addition, for those residents for whom the single-

stage policy is already good enough (e.g., guarantees an FRR < 10−9), we skip the optimization step

altogether and simply treat the single-stage policy as optimal. This significantly reduces the computation

time and results in no change in our simulated results.
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Figure 1. The fit of the lognormal imposter distribution to the observed (FAR,threshold)
pairs.
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Figure 2. The predicted vs. observed results during the fingerprint parameter estimation
procedure for the exclusion scenario. FRR vs. FAR curves for (a) the single-finger single-attempt
case, (b) the single-finger multiple-attempt case, (c) the two-finger multi-attempt case, and (d) the
two-finger single-attempt case, and (e) the rank-1 and rank-2 probabilities for the 10 fingers. package.
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Figure 3. The predicted vs. observed results during the fingerprint parameter estimation
procedure for the inclusion scenario. FRR vs. FAR curves for (a) the single-finger single-attempt
case, (b) the single-finger multiple-attempt case, (c) the two-finger multi-attempt case, and (d) the
two-finger single-attempt case, and (e) the rank-1 and rank-2 probabilities for the 10 fingers.
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Figure 4. The predicted vs. observed results during the iris parameter estimation
procedure for the exclusion scenario. FRR vs. FAR curves for (a) the two-iris two-attempt case
and (b) the two-iris single-attempt case.
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Figure 5. The predicted vs. observed results during the iris parameter estimation
procedure for the inclusion scenario. FRR vs. FAR curves for (a) the two-iris two-attempt case
and (b) the two-iris single-attempt case.
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Figure 6. FRR vs. FAR tradeoff curves in the exclusion scenario for mean verification
delay values (a) D = 36 sec and (b) D = 43 sec.
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Figure 8. FRR vs. FAR tradeoff curves in the inclusion scenario for mean verification
delay values (a) D = 36 sec and (b) D = 43 sec.
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Tables

Table 1. Comparison of simulated vs. target FAR values for the exclusion scenario.

Policy Average Simulated FAR and Average Relative Error When Target FAR is:
10−3 10−4 10−5 10−6

Average Rel Average Rel Average Rel Average Rel
Simulated Error Simulated Error Simulated Error Simulated Error

Single-stage finger 1.00× 10−3 0.1% 1.01× 10−4 1.3% 1.00× 10−5 0.5% 0.93× 10−6 6.66%
Single-stage iris 1.05× 10−3 5.4% 0.98× 10−4 1.5% 0.87× 10−5 13.6% 0.85× 10−6 15.0%

General single-stage 1.01× 10−3 1.4% 1.02× 10−4 1.7% 1.00× 10−5 0.1% 0.94× 10−6 5.7%
Two-stage iris-finger 1.06× 10−3 5.6% 1.00× 10−4 0.5% 0.91× 10−5 9.2% 0.81× 10−6 19.9%
Two-stage finger-iris 1.03× 10−3 3.2% 1.02× 10−4 2.0% 1.00× 10−5 0.33% 0.35× 10−6 65.5%

Two-stage either-other 1.04× 10−3 3.6% 1.02× 10−4 2.1% 0.99× 10−5 0.7% 0.34× 10−6 65.9%


