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Appendix S1: Spatial indicators

A spatially-explicit representation of an ecosystem can be an array of locally-coupled units in which an

ecologically relevant quantity is estimated, such as biomass or nutrients. In the rest of the paper, we

assume that our data sets are composed of snapshots, each of which is a two-dimensional space discretized

into M and N units in x and y directions, respectively. Therefore, we have a total of M × N units of

equal size for each snapshot. We call z[m,n] the value of the local state variable at location x = (m,n),

where m and n can take values 1, 2, ...,M , and 1, 2, ..., N , respectively. We are interested in quantify-

ing how the spatial characteristics of this matrix change when approaching a tipping, or bifurcation, point.
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We are considering cases where the whole ecosystem shifts to an alternative state. In our mathematical

representation of the ecosystem, this is equivalent to the entire matrix undergoing a shift. The degradation

sequence of the matrices might correspond to snapshots in time (e.g. temperature changing through time)

or in space (e.g. herbivory pressure changing in space depending on a distance to a water point). Both

types of data are relevant to evaluate and test early warning signals. However, shifts of a given spatial

ecosystem in time are more commonly the type of phenomena that we are trying to anticipate.

Indicators based on slowing down

The first set of indicators are direct consequence of the fact that as a system approaches a bifurcation

point, it takes increasingly long to return to its local equilibrium after a perturbation. This slowing down

affects the spatial dynamics of the ecological system [1] and leads to specific spatial signatures prior to

the transition point.

Spatial correlation

Due to increased recovery time to local equilibrium, when a system approaches a bifurcation point, spatial

coupling, or flow, between neighboring units becomes the dominant force. This favors neighboring units

to become more like each other, i.e. they become increasingly correlated [2]. The increasing spatial

coherence can be quantified by the spatial correlation function, or Moran’s I, between ecological states

z[i, j] and z[m,n] separated by a distance r:

C2(r) =
MN

∑M
i=1

∑M
m=1

∑N
j=1

∑N
n=1 w[i, j;m,n](z[i, j]− z̄)(z[m,n]− z̄)

W
∑M

m=1

∑N
n=1(z[m,n]− z̄)2

(1)

where z̄ is the spatial mean of the state variable (z̄ =
∑M

m=1

∑N
n=1 z[m,n]/(MN)), w[i, j;m,n] is 1 if

spatial units [i, j] and [m,n] are separated by a distance r, and is 0 otherwise, W is the total number

of units separated by the distance r. In the notation C2(r), the subscript 2 stands for 2-dimensional

space. The near-neighbor spatial correlation C2(δ), the analog of autocorrelation at lag 1 for time series,

is calculated for the distance δ corresponding nearest neighboring units of the system.

As the system approaches the bifurcation point, the spatial correlation function increases at all dis-
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tances [2]. The correlation function itself, however, decays with distance meaning that state variables

separated by farther distances are less correlated than those separated by shorter distances. Based on

the correlation function, we can define a correlation length (denoted by ξ) as a measure of how fast the

correlation decays with distance, or equivalently, as the spatial scale at which two spatial units become

uncorrelated. This can be computed by e.g. fitting an exponential function exp(−r/ξ) to C2(r). The

correlation length ξ thus obtained also increases as the system approaches a bifurcation point. In a recent

empirical paper on population dynamics in a spatially-connected laboratory populations [3], Dai et al.

proposed a related measure called ‘recovery length’ which is the spatial length scale at which a system

recovers from a perturbation. For simplicity and ease of computation, here we have restricted ourselves

to near-neighbor spatial correlation, C2(δ), alone. We also note that the choice of an exponential fit is

based on analogous changes between states in in physical materials known as ‘phase transitions’ where

it is shown that exponential is a good fit for systems far from the point of phase transition. However,

these studies also show that power-laws with negative exponents may be more suitable at the point of

phase transition. In our study, we are approaching a critical point of abrupt ecological transition but

are never exactly at the critical point. Therefore, we restrict ourselves to exponential fits alone (but see

‘Patch-based indicators’ below).

Spatial spectral properties (DFT)

Let us recall the definition of spectral properties in the context of time series before drawing parallels

with the spatial scenario. Time series data can be decomposed into components of different sine and

cosine waves of different frequencies, where frequency is an inverse measure of the time period of the

wave; a high frequency wave corresponds to small period whereas a low frequency corresponds to high

period. The spectral density function computed as a function of frequency quantifies the relative contri-

butions/weights of different frequencies of sine (or cosine) waves to the time series under study. A spatial

data can similarly be quantified by strengths of different sine and cosine waves of different wavenumbers.

A wavenumber can be thought of as a ‘spatial frequency’, or the number of times that a pattern is re-

peated in a unit of spatial length. When we think of spatial data, periodicity is visualized as wavelength,

which is inversely related to wavenumber (i.e., a small wavenumber corresponds to a large wavelength

and conversely). A spatial spectral density function is typically plotted as a function of wavenumbers

and it quantifies the relative contributions/weights of different wavenumbers of sine (or cosine) waves to
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the spatial data under study.

How does increased memory affect spectral properties in the spatial data? Increased memory manifests

itself as spectral reddening, i.e. spatial variation will typically become increasingly concentrated at lower

wavenumbers. Since wavenumbers and wavelengths are inversely related to each other, the long wave-

length fluctuations become dominant prior to a transition [4]. Spatial spectral reddening is formally

captured by the Discrete Fourier Transform (DFT) that decomposes spatial variation into a summation

of periodic sine and cosine functions [5].

The Discrete Fourier Transform (DFT), ẑ, of a spatial state variable z is defined as:

ẑ[p, q] =
1

MN

M−1
∑

m=0

N−1
∑

n=0

(z[m,n]− z̄)e−i 2π(mp/M+nq/N) (2)

=
1

MN

M−1
∑

m=0

N−1
∑

n=0

(z[m,n]− z̄)
(

cos
(

2π(
mp

M
+

nq

N
)
)

− i sin
(

2π(
mp

M
+

nq

N
)
)

)

(3)

= a[p, q]− i b[p, q] (4)

where i is the imaginary number defined such that i2 = −1, a[p, q] and b[p, q] are the real and imaginary

parts of DFT ẑ[p, q], and symbols p and q correspond to wavenumbers in x- and y-dimensions (see

equations 1 and 2 in [6]). Note that DFT, in general, can be a complex number, and therefore we plot

the power spectrum I[p, q] = |ẑ[p, q]|, where |ẑ| is the modulus of the complex number ẑ. The Fourier

coefficients, a[p, q] and b[p, q], allow plotting the power spectrum I (also called 2D-periodogram) as:

I[p, q] = MN(a[p, q]2 + b[p, q]2). (5)

The power spectrum, I[p, q], measures the contribution of cosine and sine waves with wavenumbers [p, q]

in the x- and y-coordinates, respectively, to the variance of the spatial data. The power spectrum is

typically plotted for wavenumbers up to p = M
2 and q = N

2 [7] and is scaled by the spatial variance σ2

(i.e. the scaled power spectrum is evaluated as I
σ2 ) [6].

Finally, we remark that the spatial correlation function and spectral properties can be formally shown
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to be related to one another under certain conditions (referred to as the Weiner-Kinchin theorem).

Therefore, an increase in correlation length as computed from the spatial correlation function and spectral

reddening i.e., increased contribution of small wavenumbers or large wavelength to the spatial fluctuations

are equivalent quantification of the same underlying dynamics. However, depending on the nature of the

dataset, spatial resolution, etc, one quantification may appear more informative than the other.

Variability-based indicators

Spatial variance and spatial skewness

Increased recovery time enroute to a bifurcation point may lead to stronger fluctuations around the

equilibrium state of the system [8]. This can cause spatial variance of the system to increase prior to a

transition [9, 10]. Spatial variance is formally defined as the second moment around the spatial mean of

the state variable:

σ2 =
1

MN

N
∑

n=1

M
∑

m=1

(z[m,n]− z̄)2 (6)

It has also been shown that the fluctuations around the mean can become increasingly asymmetric as

the system approaches a bifurcation point. This is because the fluctuations in the direction of the alter-

native stable state take longer to return back to the equilibrium than those in the opposite direction [10];

this asymmetry can also arise due to local flickering events (i.e. occasional jumps of local units between

their current and alternative state) [11]. This spatial asymmetry can be measured by spatial skewness,

which is the third central moment scaled by the standard deviation:

γ =
1

MN

N
∑

n=1

M
∑

m=1

(z[m,n]− z̄)3

σ3
(7)

Potential analysis

For time series data, a statistical method referred to as potential analysis has been developed to detect

whether a system exhibits alternative states [12, 13]. The underlying idea is that if a system has alter-

native states, it may sample these states when perturbed by sufficiently strong noise [14] that would

result in a bimodal probability distribution of states when monitored in time [12, 13]. Potential analysis

therefore identifies flickering [11,15] and may warn of the existence of alternative states. However, it also
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implies that the system is already undergoing shifts between its alternative states. In that sense, it is

not an early warning of an approaching transition, but it rather helps detecting a bifurcation that is in

progress. Potential analysis has been employed to detect tipping points in climate [12,13,16,17].

In the same way as a system exhibiting alternative states may flicker in time between these states, a

system found at different states at several locations where the environmental conditions are similar may

be seen in its alternative states in space (analogous to flickering, but in space). Recently, this method

was used to detect the existence of alternative states in spatial data of Savanna ecosystems [18,19]. The

application of this method to spatial data is only at its beginning but could provide interesting insights

into identifying the co-existence of alternative states in space, and thus warn about the possibility of

regime shifts of whole ecosystems in time.

The method assumes that the data may be approximated by a stochastic potential equation of the

type [13]

dz = −U ′(z)dt+ σdW (8)

where z is the dynamical state variable, σ is the strength of the external fluctuations and dW represents

a stochastic term called the Wiener process.

The probability density of the data is then used to reconstruct the potential of the system [12], where the

potential is a function whose minima (respectively maxima) indicate the stable (respectively unstable)

ecological states of the system:

U ∼ −
σ2

2
x log(P (z)) (9)

with U the potential function, σ the strength of the stochastic fluctuations, and P (z) the probability

density function obtained from the data.

In practice, the probability density of the system is fitted with polynomials of increasing orders until a

negative leading coefficient is encountered; details of the method are presented in [12,13]. The number of

locally stable states of the system is the number of local minima (or wells) in the potential. For example,

a fourth-order polynomial is needed to represent a double-well potential, i.e. a system with two stable

states. If the data suggests that the system that is being described by a one-well potential is slowing
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changing towards a to a two-well potential (i.e. two alternative stable states), it may be interpreted

as becoming increasingly sensitive to perturbations that may lead to abrupt transitions of the system

between states.

This method has been applied to spatial data sets that include several snapshots of the system at a given

stress level [18]. If such data sets are available across a gradient of stressor, potential analysis can be

used to estimate an average stability landscape as a function of the measured environmental conditions

(i.e. precipitation in the case of [18]). A changing environmental stressor may lead to changes in the

landscape characteristics, such as changing from a potential with multiple minima to a potential with a

single minimum. It may then be used to obtain an estimate of the environmental condition or stressor

at which abrupt transitions may be expected. Here we do not test this method because our example

data set are not suitable for this analysis. Nonetheless, we chose to present this method so that it can

be applied to suitable datasets.

Patch-based indicators

Many ecological systems, such as shrublands in semi-arid ecosystems and mussel beds in the intertidal, ex-

hibit striking spatial self-organized patterns [20]. It has been suggested that the nature of local ecological

interactions, such as the relative scales of competition and facilitation, can strongly influence the type of

emerging spatial patterns, leading to i) regular, periodic patches with a characteristic patch size [20–23],

or to ii) no characteristic scale of patchiness [22–26]. These different types of spatial structures have been

observed in a range of ecosystems, however their use as potential indicators of degradation has mostly

been developed in the case of drylands, where both types of spatial structures exist. In drylands, it

has been shown that the early warning signals that may be employed depend on the type of patchiness

exhibited by the ecological system [1], as described below.

Periodic patterns: probing the shape of the patches

In ecosystems exhibiting periodic patterns, as the level of external stress increases, a spatially-homogeneous

system may eventually undergo a shift to a low productivity state. The shift is preceded by an occur-

rence of a predictable sequence of self-organized patterns, also called ‘Turing patterns’, from gaps through

labyrinths to spots. Thus, the occurrence of spotted vegetation patterns has been proposed to be an early
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warning signal of imminent desertification in drylands characterized by periodic patterns [21,27].

To characterize periodic patterns in spatial data, for instance data based on spatial imagery, one can

employ different metrics derived from discrete Fourier transform (DFT). Recall from Eq (5) that DFT

decomposes spatial data into periodic sine and cosine functions and determines the relative strength (also

called Fourier coefficients) by which wavenumbers contribute to the spatial patterns. The values of the

power spectrum I (Eq. 5) can be used to identify spatial periodicity and isotropy, i.e. whether there

exists a particular orientation in the patterns.

First, the periodicity of the patterns is evaluated from the radial-spectrum (r-spectrum) obtained by

summing the power spectrum at constant distances from the origin of the power spectrum, i.e. along

concentric circles at a distance r =
√

p2 + q2 from the center. It quantifies the contribution of successive

wavenumbers to the spatial variance of the data set. Periodic patterns are characterized by a peak in

the power spectrum. The wavenumber, rm, at which a peak occurs corresponds to the number of times

that a pattern reproduces itself within a unit area of the spatial data, and therefore contains information

about the scale of the pattern.

Second, isotropy (orientation) of the spatial pattern is deduced from the angular-spectrum (θ-spectrum)

that is obtained by summing the values of the power spectrum using angular sectors. It quantifies the

contribution of different orientations to the spatial variance of the data set. For an isotropic data set, the

θ-spectrum will show uniform amplitude at all angles, whereas for an anisotropic data set, the amplitude

of the spectrum will show strong amplitudes for specific orientations [6].

The power- r- and θ-spectra can be used to characterize periodic spatial patterns. For instance, Deblauwe

et al. (2011) [28] applied the above mentioned techniques of DFT to periodic vegetation patterns in an

extensive area of Sudan. For anisotropic, band-like patterns, with a preferred orientation (visible on

the θ-spectrum), they showed that the wavenumber at which the peak occurs in the r-spectrum reduces

as aridity increases (i.e. their wavelength increases as the system approaches a transition). In isotropic

areas, with no preferred orientation of the pattern, the shape of the patterns shifts from gaps to labyrinths

and to spots as the system becomes more degraded.
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Non-periodic patterns: probing distribution of patch sizes

In contrast to regularly patterned ecosystems, there are cases where spatial processes give rise to non-

periodic (irregular) patterns. In these cases, we can quantify the size of each patch and calculate the

frequency of occurrence of different patch sizes. It is common practice to characterize the patchiness of

these systems by a function that best describes the distribution of patch sizes. Irregular patterns may

be characterized by a scale-free patch-size distribution, which means that there is no typical patch size

in the ecosystem. Such a distribution may be well approximated by a pure power law [29] or by other

heavy-tailed functions, such as a log-normal, a stretched exponential or a power law with cutoff [29,30].

Scale-free distributions of vegetation patch sizes have been observed in several ecosystems [24–26, 31].

In these ecosystems, vegetation patterns characterized by a power-law distribution with an exponential

cut-off at relatively large patch sizes have been hypothesized to reflect a state far from desertification.

As aridity or grazing pressure increases, larger vegetation patches become fragmented into smaller ones.

Computational models predict this result and show an increasing deviation from a theoretical power law

as the ecosystem approaches the desertification point [24, 32]. Therefore, it has been hypothesized that

an increasing deviation from power-law distribution of patch sizes can signal increasing desertification

(but see [33,34]).

One way of fitting a given distribution to data has been to use ordinary least square log-log regression,

but this method is known to have substantial bias in estimating the parameter values, especially for small

data sets [29,30]. Maximum likelihood methods or least-square fits of the inverse-cumulative distribution

(which quantifies the number of patches whose size is larger than a given value s for different values of

s) provide more accurate estimates of the parameters of most heavy-tailed functions [30].
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