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Stochastic biological models

1 Michaelis-Menten kinetics

The Michaelis-Menten (MM) model is a simple example of enzyme kinetics con-
sisting in 3 reactions, which describe the binding of an enzyme E to a substrate
S to form an intermediate complex ES, that is eventually converted into a fi-
nal product P [1]. These reactions, together with the values of the associated
stochastic constants, are given in Table 1. The initial molecular amounts used
in this work, given as number of molecules, are listed in Table 2.

Table 1. Michaelis-Menten model

No. Reactants Products Stochastic constant

r1 S + E ES 0.0025
r2 ES S + E 0.1
r3 ES E + P 5.0

Table 2. Initial molecular amounts in the Michaelis-Menten model

Molecular species Initial amount

S 1000
E 750
ES 0
P 0
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2 Prokaryotic auto-regulatory gene network

The prokaryotic gene network (PGN) [2] describes an auto-regulation mecha-
nism of gene expression, whereby a gene (DNA) that codes for a protein (P ) is
inhibited by binding to a dimer of the protein itself (DNA:P2). Gene expres-
sion is a good example of stochasticity in biological systems: the transcriptional
regulators are present in a few copies, so that the binding and release of the
regulators can be expressed in probabilistic terms.

The reactions describing the molecular interactions occurring in PGN, to-
gether with the values of the associated stochastic constants, are given in Table
3. The only initial molecular amount used in this work is DNA=200 molecules;
all other molecular species are generated in the system as long as reactions are
applied.

Table 3. Prokaryotic auto-regulator gene network model

No. Reactants Products Stochastic constant

r1 DNA+ P2 DNA:P2 0.1
r2 DNA:P2 DNA+ P2 0.7
r3 DNA DNA+mRNA 0.35
r4 mRNA λ 0.3
r5 2P P2 0.1
r6 P2 2P 0.9
r7 mRNA mRNA+ P 0.2
r8 P λ 0.1

Remark : λ denotes the degradation of the reactant

2



M.S. Nobile, P. Cazzaniga, D. Besozzi, D. Pescini, G. Mauri. cuTauLeaping: a GPU-powered

Tau-leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems

3 The Schlögl system

The Schlögl system [3, 4] is one of the simplest prototypes of chemical systems
presenting a bistable dynamical behavior, i.e., the capacity of switching between
two different stable steady states in response to some chemical signaling (see,
e.g., [5–7] and references therein). The Schlögl model consists of 4 chemical re-
actions and 3 molecular species, listed in Table 4. The initial molecular amounts
used in this work are given in Table 5.

Table 4. The Schlögl model

No. Reactants Products Stochastic constant

r1 A+ 2X 3X 3 · 10−7

r2 3X A+ 2X 1 · 10−4

r3 B X 1 · 10−3

r4 X B 3.5

Table 5. Initial molecular amounts in the Schlögl model

Molecular species Initial amount

A ∗1 · 105
B ∗2 · 105
X 250

*The amounts of species A,B are kept constant during the execution of simulations.

All molecular amounts are expressed as number of molecules.
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4 Ras/cAMP/PKA pathway

In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway plays a
major role in the regulation of metabolism, stress resistance and cell cycle pro-
gression [8, 9]. This pathway controls more than 90% of all genes that are
regulated by glucose through the activation of the protein kinase A (PKA),
that is able to phosphorylate a plethora of downstream proteins. PKA is ac-
tivated by the binding of the second messenger cyclic-AMP (cAMP), which is
synthesized by the adenylate cyclase Cyr1. The activity of Cyr1 is controlled by
the monomeric GTPases Ras1 and Ras2, which cycle between a GTP-bound ac-
tive state and a GDP-bound inactive state. In turn, Ras proteins are positively
regulated by protein Cdc25, a Ras-GEF (Guanine Nucleotide Exchange Factor)
that stimulates the GDP to GTP exchange, and negatively regulated by pro-
teins Ira1 and Ira2, two Ras-GAP (GTPase Activating Proteins) that stimulate
the GTPase activity of Ras proteins. The degradation of cAMP is governed by
two phosphodiesterases, Pde1 and Pde2. These two enzymes constitute a major
negative feedback in this pathway: the low-affinity phosphodiesterase Pde1 is
active under the positive regulation of PKA, while the high-affinity phosphodi-
esterase Pde2 is active in the basal level regulation of cAMP.

The reactions describing the interactions occurring in the Ras/cAMP/PKA
pathway, together with the values of the associated stochastic constants, are
given in Table 6 (see also [10–12] for further details). In particular:

• reactions r1, . . . , r10 describe the switch cycle of Ras2 protein between its
inactive state (Ras2-GDP) and active state (Ras2-GTP), regulated by the
activity of the GEF Cdc25 and of the GAP Ira2;

• reactions r11, r12, r13 describe the synthesis of cAMP through the activa-
tion of the adenylate cyclase Cyr1, mediated by Ras2-GTP;

• reactions r14, . . . , r25 describe the activation of PKA, mediated by the
reversible binding of cAMP to its two regulatory subunits, and the subse-
quent dissociation of the PKA tetramer, which releases the two catalytic
subunits;

• reactions r26, . . . , r33 describe the activity of the two phosphodiesterases
Pde1 and Pde2, that carry out the degradation of cAMP. The activation
of Pde1 is regulated by the catalytic subunits of PKA, and it represents
one of the main negative feedback control exerted by PKA within this
pathway;

• reactions r34, r35 describe the negative feedback exerted by PKA on Cdc25,
whose effect is modeled as a partial inactivation of the GEF activity and
a reduction of the active state level of Ras2-GTP.

The initial molecular amounts used in this work are summarized in Table 7.
The SBML version of this model is available at the BioModels database [13]

under submission identifier MODEL1309060000.
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Table 6. Mechanistic model of the Ras/cAMP/PKA pathway

No. Reagents Products Stochastic constant

r1 Ras2-GDP + Cdc25 Ras2-GDP-Cdc25 1.0
r2 Ras2-GDP-Cdc25 Ras2-GDP + Cdc25 1.0
r3 Ras2-GDP-Cdc25 Ras2-Cdc25 + GDP 1.5
r4 Ras2-Cdc25 + GDP Ras2-GDP-Cdc25 1.0
r5 Ras2-Cdc25 + GTP Ras2-GTP-Cdc25 1.0
r6 Ras2-GTP-Cdc25 Ras2-Cdc25 + GTP 1.0
r7 Ras2-GTP-Cdc25 Ras2-GTP + Cdc25 1.0
r8 Ras2-GTP + Cdc25 Ras2-GTP-Cdc25 1.0
r9 Ras2-GTP + Ira2 Ras2-GTP-Ira2 3.0·10−2

r10 Ras2-GTP-Ira2 Ras2-GDP + Ira2 7.0·10−1

r11 Ras2-GTP + Cyr1 Ras2-GTP-Cyr1 1.0·10−3

r12 Ras2-GTP-Cyr1 + ATP Ras2-GTP-Cyr1 + cAMP 2.1·10−6

r13 Ras2-GTP-Cyr1 + Ira2 Ras2-GDP + Cyr1 + Ira2 1.0·10−3

r14 cAMP + PKA cAMP-PKA 1.0·10−5

r15 cAMP + cAMP-PKA (2cAMP)-PKA 1.0·10−5

r16 cAMP + (2cAMP)-PKA (3cAMP)-PKA 1.0·10−5

r17 cAMP + (3cAMP)-PKA (4cAMP)-PKA 1.0·10−5

r18 (4cAMP)-PKA cAMP + (3cAMP)-PKA 1.0·10−1

r19 (3cAMP)-PKA cAMP + (2cAMP)-PKA 1.0·10−1

r20 (2cAMP)-PKA cAMP + cAMP-PKA 1.0·10−1

r21 cAMP-PKA cAMP + PKA 1.0·10−1

r22 (4cAMP)-PKA C + C + R-2cAMP + R-2cAMP 1.0
r23 R-2cAMP R + cAMP + cAMP 1.0
r24 R + C R-C 7.5·10−1

r25 R-C + R-C PKA 1.0
r26 C + Pde1 C + Pde1p 1.0·10−6

r27 cAMP + Pde1p cAMP-Pde1p 1.0·10−1

r28 cAMP-Pde1p cAMP + Pde1p 1.0·10−1

r29 cAMP-Pde1p AMP + Pde1p 7.5
r30 Pde1p + PPA2 Pde1 + PPA2 1.0·10−4

r31 cAMP + Pde2 cAMP-Pde2 1.0·10−4

r32 cAMP-Pde2 cAMP + Pde2 1.0
r33 cAMP-Pde2 AMP + Pde2 1.7
r34 C + Cdc25 C + Cdc25p 1.0
r35 Cdc25p + PPA2 Cdc25 + PPA2 1.0·10−2
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Table 7. Initial molecular amounts in the Ras/cAMP/PKA model

Molecular species Initial amount

Cyr1 200
Cdc25 300
Ira2 200
Pde1 1400
PKA 2500
PPA2 4000
Pde2 6500

Ras2-GDP 20000
GDP ∗1.5·106
GTP ∗5.0·106
ATP ∗2.4·107

*The amounts of GDP, GTP and ATP are kept constant during the execution of

simulations. All molecular amounts are expressed as number of molecules per cell,

derived according to data presented in [14], as described in [10,12].
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