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S1 Databases

The data set is illustrated on Figures S1 and S2
and is the result of compiling GIS and population
databases into several layers.

S1.1 First layer: population

We use the 2012 LandScan [1] high-resolution
global population distribution data that estimates
the population count with a spatial resolution of
approximately 1 km, or 30 × 30 seconds of arc
(see http://www.ornl.gov/sci/landscan/).

S1.2 Second layer: the gas pipeline

network

We compiled the European gas pipeline transmis-
sion network and the Liquefied Natural Gas (LNG)
terminals from the 2011 Platts Natural Gas geospa-
tial data (see http://www.platts.com/Products/
gisdata), including pipelines that are planned or
under construction. The data set covers 25 of the 27
EU member states (except Malta and Cyprus), Be-
larus, Moldova, Western Russia, Ukraine (all part of
the former USSR), Bosnia and Herzegovina, Croa-
tia, Macedonia, Serbia (all part of the former Social-
ist Federal Republic of Yugoslavia), Algeria, Libya,
Morocco, Tunisia (all part of the Maghreb), Nor-
way, Switzerland and Western Turkey.

Similarly to electrical power grids, gas pipeline
networks have two layers: transmission and distri-
bution. The transmission network transports nat-
ural gas over long distances (typically across coun-
tries) and has a non-trivial topology. The distri-
bution network is tree-like and comprises pipelines
with smaller diameter that deliver gas to consumers.
We extract the gas pipeline transmission network
as all the important pipelines with diameter d ≥ 15
inches. To finalize the network, we add pipelines in-
terconnecting major branches, so that the resulting
network is connected. Network links are weighted
by pipeline diameter and length. To simplify, we
assume that gas can flow on both directions of
a pipeline, although over different time periods.
The compiled network has 2, 649 nodes (compressor
stations, city gate stations, Liquefied Natural Gas
(LNG) terminals, etc.) connected by 3, 673 pipeline
segments spanning 186, 132 km.

S1.3 Third layer: urban areas

To avoid the controversy in the definition of an ur-
ban area [2], we considered only urban areas with
100, 000 or more inhabitants as defined by the Eu-
rostat urban audit (see http://www.urbanaudit.

org). We are interested not just in the adminis-
trative boundaries of cities, but intend also to cap-
ture the surrounding areas that include a substan-
tial share of the commuters into the city, since the
gas pipeline infrastructure also supplies these pe-
ripheral urbanized districts. Note that the infras-
tructure network supplies directly the major urban
areas, but may not intersect spatially with the built-
up area of cities.
Urban areas in the European Union member

countries and candidate countries are defined
by Eurostat as Larger Urban Zones (http://
www.urbanaudit.org), and the GIS files are
provided by the European Environment Agency
(http://www.eea.europa.eu/data-and-maps/
data/urban-atlas). The city levels in non-EU
countries are defined from remotely sensed data
(see [3] and http://www.naturalearthdata.

com/downloads/10m-cultural-vectors/

10m-urban-area/). These city level areas are
too small compared with the EU Larger Urban
Zones. Hence, we define an urban area in non-EU
countries to be the union of the third-level admin-
istrative divisions (http://www.gadm.org/) that
intersect the corresponding city level polygon. We
have found 376 urban areas with a total area of
723, 957 km2.

S1.4 Fourth layer: network of gas

movements by pipeline and

LNG

The fourth layer is the network of annual move-
ments of gas by pipeline and of Liquefied Natu-
ral Gas by ship into European terminals, collected
from the International Energy Agency Natural Gas
Information Statistics for 2011 [4] (see http://

www.oecd-ilibrary.org/statistics). This di-
rected network is represented by the weighted ad-
jacency matrix Tmnof gas transported from m to n,
where m stands either for a gas exporting coun-
try or for Liquefied Natural Gas (LNG) termi-
nals that supply an importing country n (see Fig-
ure 2 of the main paper). We make use of ISO
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http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-urban-area/
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Figure S1. European gas pipeline network including part of North Africa. The present network is
shown in dark blue, and the planned pipelines are shown in red. The population density is plot in dark
green and Larger Urban Zones are indicated in cyan. Source: compiled from authors’ data and Platts.
Map composed in ESRI ArcGIS.
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alpha-2 country codes in m and n to denote in-
dividual countries (see http://www.iso.org/iso/

home/standards/country_codes.htm), so that,
for example, T(RU)(FR) is the amount of gas im-
ported annually by France from Russia.

S2 The Model

S2.1 Tessellation of urban and non-

urban areas and location of

source and sink nodes

For simplicity, we consider that all nodes in a gas
exporting country are source nodes. The partition
of non-urban areas is such that all points within a
given Voronoi cell are closer to their corresponding
gas pipeline node than to any other node. If a gas
pipeline node is inside an urban polygon, we call it
an urban node, otherwise, we say the node is non-
urban. To simplify, we assume that an urban area is
supplied by the pipeline links that cross its border
and have a node inside its polygon. This node turns
out to be also the urban node on the pipeline that is
the closest to the border of the urban polygon, and
is thus the first node that gas will cross along the
pipeline when entering the urban area. Hence, we
naturally say that the node is an urban sink, and
we consider no other sink nodes along the pipeline
for the given urban area. If an urban area polygon
contains no gas nodes, we associate it to the closest
gas node (urban or not) and say this node is a sink.
We exclude pipeline links that have both end nodes
located inside urban areas. In other words, we only
consider pipeline links that have one urban and one
non-urban node (see Figures S3 and S4).

S2.2 How we pair sink and source

nodes

Source nodes are either located in an exporting
country m, or at Liquefied Natural Gas (LNG) ter-
minals. When m stands for a country, we connect
by a path rm,k,n,l (k = 1, . . . ,Φmn and l = 1, . . . , tn)
the tn sinks in an importing country n to the Φmn

closest source nodes in the exporting country m,
where

Φmn =





min(10, sm) if m is a gas
exporting country

gn if m is LNG
(S1)

In other words, when m is a country, we connect
each sink node in an importing country n to a maxi-
mum of ten source nodes in an exporting countrym.
Whenm stands for LNG, we assume that sink nodes
in an importing country n are supplied from all the
LNG terminals in country n (see summary of the
notation in Table 1). Since our congestion control
algorithm shares available pipeline capacity, sink
nodes can access at most the capacity available at
cross-border links of exporting countries. We have
a total of 15 nodes in Russia and 11 nodes in Nor-
way, which link to cross-border pipelines and thus
account for all the cross-border capacity between
these exporting countries and all importing coun-
tries. Hence, our choice of a maximum Φmn = 10.

S2.3 How we define demand

We define the demand of a country to be the amount
of gas imported over the gas pipeline network and
Liquefied Natural Gas terminals, as given by the
Tmn matrix (see Figure 2 of the main paper), and
the demand of a given geographical area to be the
demand of the country weighted by the ratio be-
tween the area and the country populations. Since
demand for energy is proportional to population [5],
we locate the sink nodes and associate them with
the population they supply. When the area is ur-
ban, we split its total population equally among
the sink nodes inside the urban polygon. If an
urban area contains no gas nodes inside its poly-
gon, we add its population to the population as-
sociated with the closest gas node. In non-urban
areas, we associate the gas pipeline node at centre
of a Voronoi cell with the population of the cell. Be-
cause each sink node in an importing country n is
connected by Φmn paths to source nodes in an ex-
porting country m, each of these paths has a share
of the demand Tmn given by

Dmnl =
1

Φmn

ZnlTmn

zn
(S2)

where Znl is the population associated with sink
node l of importing country n, zn is the population
of importing country n, Tmn is the volume of gas
imported by an importing country n from an ex-
porting country m, and the number Φmn of paths
from an exporting country m to each sink node is
given by equation (S1) (see summary of the nota-
tion in Table 1).

http://www.iso.org/iso/home/standards/country_codes.htm
http://www.iso.org/iso/home/standards/country_codes.htm
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Figure S2. Number of urban areas and Liquefied Natural Gas terminals, and length of the present
and planned gas pipeline networks of the countries analysed.
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We next express the demand of a path in units
of the minimum demand on the network. To do
this, we note that Dmnl is independent of k, and
we replace path rm,k,n,l having demand Dmnl by
Dmnl paths identical to rm,k,n,l, each with demand
min(Dmnl), where

Dmnl =

⌊
Dmnl

min(Dmnl)

⌋
, (S3)

where ⌊·⌋ is the largest integer not greater than ·.
We note that the demand of a sink node from a
source node is now proportional to the number of
paths connecting the source and sink pair.
The path notation rm,k,n,l has been useful so far

to locate the origin and destination of the paths, but
the congestion control algorithm uses matrix mul-
tiplication, and it is simpler from now on to index
paths in the network by an integer. To do this, we
loop through all pairs of exporting and importing
countries with a non-zero entry in the T matrix and
re-label each of the Dmnl source-sink paths identi-
cal to rm,k,n,l by the new index. In other words, for
each pair of importing-exporting countries, we go
through the DmnlΦmntn shortest paths that con-
nect source to sink nodes (see Table 1), and we in-
dex all paths in increasing order of first m, then n
and finally k. Now that we have allocated the source
to sink paths, we update the number of paths on
the network ρ =

∑ν
i=1

∑ν
j=1

∑tn
l=1 DmnlΦmnT̂mn,

where T̂mn = 1 if Tmn is positive and zero oth-
erwise, and we write rj to denote path j, where
j = 1, . . . , ρ.

S2.4 The problem with shortest path

routing

The pattern of route intersection determines how
much the paths condition each other in their shar-
ing of network links, and the capacity of links lim-
its how much can be transported locally. If the
network is not congested, transport over the geo-
graphical shortest paths minimizes the costs. In
contrast, shortest path routing in congested net-
works can be inefficient, because it may cause con-
gestion at a few overloaded links, while avoiding
alternative routes that are only slightly longer but
have higher capacity. Moreover, routing over short-
est paths in gas pipeline networks makes the effect
of congestion even worst. Indeed, parallel routes

with similar capacity are often available, but only
one of these routes is the shortest path (see Fig-
ure S5), and hence the network capacity is largely
underused.

S2.5 How we determine the source

to sink paths

To begin integrating routing and congestion control,
we consider first how to distribute the capacity ci
of a congested link i over the 1+ bi = 1+

∑ρ
j=1 Bij

paths that pass through the link when we add a new
path through i, where B is the link-path incidence
matrix (Bij = 1 if the link i belongs to the path
rj and Bij = 0 otherwise). An equitable way to
divide the capacity on the link is to assign a path
flow of hi = ci/(1 + bi) to each of the 1 + bi paths.
Intuitively, hi is the slice of capacity allocated in
a fair way to each of the bi paths that share the
capacity ci, and the split is viewed as a fair out-
come [6]. Moreover, 1/hi can be interpreted as a
simple measure of network congestion, since it has
a maximum at the most congested link [7]. Hence,
we combine routing and congestion through an ef-
fective link length:

l̃i =

(
〈hi〉

hi

)α

li, (S4)

where 〈hi〉 is the average of hi over all network
links, li is the length of link i, and 0 ≤ α < 1.
Whereas we weight links by their length li in the
calculation of geographical shortest paths, we now
weight each link by l̃i in the calculation of weighted
shortest paths. Thus, a link becomes less attractive
(its effective length is increased) if it is more con-
gested than the average. We find that the global
network throughput is maximized for α = 0.03 (see
Figure S6), and thus we use this value in the simu-
lations.
We define the effective path length

←→
lj of path j as

the sum of the effective lengths of each of its links.
We interpret the sum of link weights on a path as
a penalty, which we then use to reroute paths it-
eratively via the following heuristic [8]. We i) go
through each source and sink node pair and find
a new path j connecting the two nodes; ii) if this

new path has lower value of
←→
lj than the previously

found path, then it replaces the existing source to
sink path; iii) we recompute the weights l̃i for all
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Figure S3. Schematic figure illustrating the
allocation of sink nodes. Urban sink nodes are
shown in red, urban nodes that are not sinks are
shown in yellow, and non-urban sink nodes are
shown in blue.

links on the new paths and repeat the procedure
for all paths, until it has been executed 20 times
(we found that the solution is does not change sig-
nificantly when the number of iterations is larger
than 20).

S3 Congestion Control

How should we allocate scarce network resources to
competing paths so as to manage network conges-
tion? There are two mechanisms at play in such al-
location. On one hand, maximizing the flow trans-
ported on the network may lead to some paths being
assigned a zero share of network capacity, and hence
zero path flow. These paths are effectively blocked
from using the network, and hence the flow alloca-
tion is unfair. On the other hand, allocations that
share network capacity fairly are known to deliver
low throughput and are thus inefficient [7]. Hence,
a good solution to the problem of congestion control
aims at a trade-off between efficiency and fairness.
How should we generalize equation (S4) when

paths pass through several congested links on the
network? Our intuitive notion of fairness breaks
down on networks, because paths typically cross
several congested links and hence share the capac-
ity of these links with other paths. Roughly, a so-
lution is to allocate path flows iteratively, such that
at each iteration we increase all path flows that do
not pass through existing bottleneck links by the
slice of capacity that is found by sharing equitably
the capacity of the most congested links. The slice
of capacity available to each path is the smallest on
the most congested links, that is, the ratio h is the
smallest on these links. A procedure to do this finds
one link i, with the smallest ratio hi and increases
all path flows by hi. Such procedure distributes par-
simoniously the capacity of link i among the paths
that pass through the link, and increases all unsat-
urated path flows by hi. The procedure then fixes
the path flows of the paths that cross links with ca-
pacity ci, and decreases the capacity of links crossed
by these paths by the amount of flow fixed 1. This
creates a residual network, on which the procedure
is then repeated, such that path flows are saturated
and the capacity available at the links they cross
is updated at each iteration. The procedure is re-

1In general, there may be more than one link with mini-

mum hi, in which case all of such links are saturated.
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peated until all paths in the network are saturated.
Such allocation is known as max-min fair [9, 7],
a name that comes from the way that path flows
with minimum allocation are maximized by split-
ting equitably the capacity at the bottleneck links
in an iterative process. The max-min fair alloca-
tion is such that to increase a path flow we have to
decrease another path flow that is already smaller.
The major limitation of the max-min fair method

is that network throughput is low compared to max-
flow. To understand the mechanism behind this, we
have to look at how both max-min fair and max-
flow allocate path flows. The efficient allocation
(max-flow) privileges short, over long paths that
pass through several bottleneck links. Long paths
take up capacity from other paths at each bottle-
neck, but only contribute to network throughput
at the sink node. Hence, network throughput is
maximized by minimizing the share of capacity to
the long paths that pass through many bottlenecks,
so that shorter paths can get a higher allocation
of capacity and thus provide a higher contribution
to network throughput. On the other hand, the
max-min fair allocation shares the capacity of bot-
tlenecks among the paths that pass through them.
Thus, unlike max-flow, max-min fair allocations do
not restrict the amount of network capacity that
long paths can consume and are often inefficient.
This limitation prompted the search for a trade-
off between max-min fairness and max-flow, which
would still distribute network capacity in an equi-
table way, and thus proportional fairness appeared
in the late 1990s.

S3.1 Proportional Fairness

Both proportional fairness and max-min fairness
share the capacity ci of a single link among N paths
in a fair way, so that each path gets a path flow of
ci/N , but the two allocations are distinct when op-
erating on a network.

Definition 1 A vector of path flows f∗ =
(f∗

1 , . . . , f
∗

ρ ) is proportionally fair if it is feasible
and if for any other feasible vector of path flows f ,
the sum of proportional changes in the path flows is
non-positive [10, 11]:

ρ∑

j=1

fj − f∗

j

f∗

j

6 0. (S5)

If there were no capacity constraints, equation (S5)
would be verified when f∗

j =∞ for all j = 1, . . . , ρ.
The capacity constraints imply that a flow alloca-
tion f∗ is proportionally fair if all other feasible vec-
tor of path flows fj = (1 + δj)f

∗

j , for δ ∈ R
ρ where

j = 1, . . . , ρ, verify that the aggregate of percent
changes

∑ρ
j=1 δj is non-positive.

Theorem 1 The unique set of feasible paths flows
that maximizes the function U(f) =

∑ρ
j=1 log(fj)

is proportionally fair.

Proof. The proof given here is a direct application
of the properties of convex functions [12, 13] and
global maxima of a function (a sketch of the proof
is given in [14]). First, observe that the set of fea-
sible path flows is compact (closed and bounded)
and convex. The functions log(fj) are strictly con-
cave, and thus U(f) is strictly concave, since it is
the sum of strictly concave functions. Thus U(f)
has a unique global maximum. Second, note that
the tangent plane at any point of a convex (con-
cave) function lies below (above) the graph of the
function. Hence, since U(f) is concave:

∇U(f) · (g − f) > U(g)− U(f). (S6)

Now assume that f is a proportionally fair alloca-
tion. Then, ∇U(f) · (g−f) 6 0 from equation (S5),
and thus U(f) − U(g) > 0 from equation (S6) for
all other feasible g. Hence, f is a global maximum
of U . Conversely, assume that the function U has
one global maximum at U(f). Then,

∇U(f)·(g−f) = lim
t→0+

U(f + t(g − f))− U(f)

t
≤ 0,

and thus the flow allocation is proportionally fair.
�

Theorem 2 If a vector f∗ = (f1, . . . , fρ) of path
flows is proportionally fair, then each path will pass
through a bottleneck.

Proof. To see this, assume that there is one path
rj that does not pass through any bottleneck. Con-
sider link i ∈ E(rj) on the path rj . The path
flow fj can be increased by δ = mini∈E(rj){ci −∑ρ

k=1 Bi,kfk} > 0, such that the new vector of path
flows is f ′ = (f1, . . . , fj + δ, . . . , fρ). Hence, f ′ is
not proportionally fair because

∑ρ
q=1(f

′

q−fq)/fq =
δ/fj > 0, and the path flow fj can be increased. �
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Figure S4. Urban sink nodes are highlighted in red for the Larger Urban Zones of (A) Hamburg and
North West Germany, (B) Madrid, and (C) Milan. Source: compiled from authors’ data and Platts.
Map composed in ESRI ArcGIS.
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Figure S5. Detail of the gas pipeline network in Italy, showing the presence of parallel routes. Source:
compiled from authors’ data and Platts. Map composed in ESRI ArcGIS.

S3.2 A centralized algorithm for

Proportional Fairness

Now in order to find the proportionally fair alloca-
tion, we need to maximize U(f), constrained to the
vector of path flows being feasible, that is:

maximize
f

U(f) =

ρ∑

j=1

log(fj)

subject to Bf ≤ c

fj ≥ 0,

(S7)

where the link-path incidence matrix is defined by
Bij = 1 if the link i belongs to the path rj and
Bij = 0 otherwise, and c = (c1, . . . , cη) is the vec-
tor of link capacities. The aggregate utility U(f) is
concave and the inequality constraints are convex,
and hence the optimization problem (S7) is convex.
Thus, any locally optimal point is also a global op-
timum and we can use results from the theory of
convex optimization to solve problem (S7) (see [15]
and [16] for a brief introduction to Lagrange mul-
tipliers, and [17] on convex optimization). The
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Figure S6. Plot of the global network
throughput in the present and future baseline
scenarios when we apply the heuristic routing
algorithm of Equation (S4). Horizontal lines are a
guide for the eye and show network throughput in
the present and future baseline scenarios with
shortest path routing. We choose the value
α = 0.03 that maximizes the global throughput.
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Lagrangian associated with the optimization prob-
lem (S7) is [10, 11]:

L(f, µ) =

ρ∑

j=1

log(fj) + µT (c−Bf) (S8)

where µ = (µ1, . . . , µη) is a vector of Lagrange mul-
tipliers. The Lagrange dual function [17] is then
given by supf L(f, µ), which is easily determined
analytically by ∂L(f∗, µ∗)/∂f = 0 as

∂L(f∗, µ∗)

∂f∗

j

=
1

f∗

j

−

η∑

i=1

Bijµ
∗

i = 0⇔

f∗

j =
1∑η

i=1 Bijµ∗

i

, (S9)

and thus

sup
f

L(f, µ) = −

ρ∑

j=1

log

(
η∑

i=1

Bijµi

)
+

η∑

i=1

µici − ρ

(S10)
After removing the constant term in equation (S10)
and converting to a maximization problem, we ob-
tain the dual problem [10, 11]

maximize
L

V (µ) =

ρ∑

j=1

log

(
η∑

i=1

Bijµi

)
−

η∑

i=1

µici

subject to µi ≥ 0.
(S11)

The primal problem (S7) is convex and the inequal-
ity constraints are affine. Hence, Slater’s condi-
tion is verified and thus strong duality holds. This
means that the duality gap, i.e., the difference be-
tween the optimal of the primal problem (S7) and
the optimal of the dual problem (S11), is zero [17].
Strong duality has potentially immense implica-
tions as, depending on the problem, it may be easier
to solve the primal or the dual. In our case, the pri-
mal objective function depends on ρ variables (the
path flows) and is constrained by an affine system of
equations, whereas the dual objective function de-
pends on η variables (the links) and is constrained
only by the condition that the Lagrange multipliers
are non-negative. Taken together, the methods of
convex optimization provide us with powerful tools
to gain insights into patterns of congestion in net-
works where the number ρ of transport routes can
be considerably larger than the number η of avail-
able transport links. Strong duality then states that

the optimal path flows f∗ are related to the optimal
Lagrange multipliers µ∗ by equation (S9).

Since f∗ maximizes the Lagrangian over f , it fol-
lows that its gradient must vanish at f∗, and thus
the following KKT condition is satisfied:

µ∗

i


ci −

ρ∑

j=1

Bijf
∗

j


 = 0. (S12)

Equation (S12), often referred to as complementary
slackness [17], states that the vector µ of the La-
grange multipliers and the vector of residual ca-
pacity have complementary sparsity patterns. To
be more specific, either link i is utilized to full
capacity (i.e., ci =

∑ρ
j=1 Bijf

∗

j ) and µ∗

i > 0, or
µ∗

i = 0 and the capacity of link i is underused
(i.e.,

∑ρ
j=1 Bijf

∗

j < ci). This gives us a simple and
powerful way to identify bottleneck links numeri-
cally, as the links with a positive Lagrange multi-
plier µ∗

i .

S3.3 A centralized algorithm for

Proportional Fairness with link

price

Now suppose that the network operator charges a
price per unit flow pi(y) for the use of link i, when
the total load on the link is y =

∑ρ
j=1 Bijfj . This

means that the price at one link depends on all the
paths that pass through the link [11]. Hence, the
problem (S7) can be generalized by adding a cost
or penalty that is a function of the price [10, 11]. If
the penalty is infinite when the link capacity is ex-
ceeded, y > ci, then we can generalize problem (S7)
to replace the capacity constraints by the link cost,
such that

maximize
f

Û(f, p, y) =

ρ∑

j=1

log(fj)−

η∑

i=1

∫ yi

0

pi(z)dz

subject to

Bf = y

fj , yi ≥ 0.

(S13)

To derive the dual of problem (S13), we first find
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Figure S7. Map of the flow allocation in the following scenarios: (A) present network, (B) present
network without Algeria, (C) present network without Belarus, (D) present network without Libya, and
(E) present network without the Netherlands. Link thickness is proportional to the total flow on the
link. Links in dark red are bottlenecks and links in blue are not used to their full capacity. The scenario
country, which is hypothetically removed from the network, is highlighted in gray on the map. Source:
compiled from authors’ data and Platts. Map composed in ESRI ArcGIS.
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Figure S8. Map of the flow allocation in the following scenarios: (F) present network without
Liquefied Natural Gas (LNG) terminals, (G) present network without Norway, (H) present network
without Poland, (I) present network without Russia, (J) present network without Ukraine. Link
thickness is proportional to the total flow on the link. Links in dark red are bottlenecks and links in
blue are not used to their full capacity. The scenario country, which is hypothetically removed from the
network, is highlighted in gray on the map. Source: compiled from authors’ data and Platts. Map
composed in ESRI ArcGIS.
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Figure S9. Map of the flow allocation in the following scenarios: (A) future network, (B) future
network without Algeria, (C) future network without Belarus, (D) future network without Libya, and
(E) future network without the Netherlands. Link thickness is proportional to the total flow on the link.
Links in dark red are bottlenecks and links in blue are not used to their full capacity. The scenario
country, which is hypothetically removed from the network, is highlighted in gray on the map. Source:
compiled from authors’ data and Platts. Map composed in ESRI ArcGIS.



15

its Lagrange dual

ĝ(µ) =

ρ∑

j=1

log

(
1∑η

i=1 Bijµi

)
− ρ+

η∑

i=1

(
µip

−1
i (µi)−

∫ p
−1

i
(µi)

0

pi(z)dz

)

(S14)
To simplify equation (S14), we integrate by parts
and then by substitution,

ĝ(µ) =

ρ∑

j=1

log

(
1∑η

i=1 Bijµi

)
−ρ+

η∑

i=1

∫ µi

0

qi(x)dx,

(S15)
where q(·) is the inverse of p(·). Following [10, 11],
we now remove the constant term in equation (S15)
and covert to a maximization problem to obtain the
dual of problem (S13):

maximize
L

V̂ (µ, q) =

ρ∑

j=1

log

(
η∑

i=1

Bijµi

)
−

η∑

i=1

∫ µi

0

qi(x)dx

subject to µi ≥ 0.
(S16)

The dual problem (S16) is equivalent to the original
dual problem (S11) if qi(x) = ci. However, this
function is non-invertible and thus we approximate
it by the invertible function [10, 11]

qi(x) =
xci
x+ ǫ

. (S17)

Problems (S16) and (S11) are thus equivalent in the
limit ǫ → 0. The primal problems (S7) and (S13)
are equivalent in the limit ǫ→ 0 if

pi(y) ∼ q−1
i (y) = yǫ/(ci − y). (S18)

S3.4 A decentralized algorithm for

Proportional Fairness

For each path rj , the network is offering a certain
path flow fj with unit rate of change, dfj/dt = 1.
Now suppose that the network operator charges a
price per unit flow pi(y) for the use of link i, when
the total load on the link is y =

∑ρ
j=1 Bijfj . This

means that the price at one link depends on all the

paths that pass through the link. The price causes
a reduction in the path flow fj , such that

d

dt
fj(t) = 1− fj(t)

η∑

i=1

Bijµi(t), (S19)

where the price on link i is

µi(t) = pi




ρ∑

j=1

Bijfj(t)


 . (S20)

User i responds to an underused capacity with
a steady increase of its path flow, and to
congestion with a multiplicative decrease of its
path flow at a rate proportional to the conges-
tion price. This additive-increase/multiplicative-
decrease mechanism is best known for its use in
communication networks, and is implemented in
TCP congestion avoidance [18, 19].
A possible pricing policy consists in charging only
for link flows that are close to capacity, with a sharp
increase in the price that each path pays as the link
becomes saturated:

pi(y) =
max(0, y − ci + ǫ)

ǫ2
. (S21)

As ǫ → 0, the price pi tends to zero for link
flows below capacity, and to infinity for saturated
links. Hence, problem (S13) approximates arbitrar-
ily closely the primal problem (S7).

S4 Results

Figures S7, S8, S9 and S10 show the load on net-
work links in the present and future scenarios.
These figures demonstrate that our model repro-
duces the main transport corridors in Europe, and
show the spatial pattern of bottleneck links for each
scenario. It is apparent how a hypothetical removal
of either Russia or Ukraine cuts-off the major trans-
port routes, and damages drastically the supply of
populations in Europe.

S4.1 Detailed interpretation of re-

sults at country and urban lev-

els

At country level:
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Figure S10. Map of the flow allocation in the following scenarios: (F) future network without
Liquefied Natural Gas (LNG) terminals, (G) future network without Norway, (H) future network
without Poland, (I) future network without Russia, (J) future network without Ukraine. Link thickness
is proportional to the total flow on the link. Links in dark red are bottlenecks and links in blue are not
used to their full capacity. The scenario country, which is hypothetically removed from the network, is
highlighted in gray on the map. Source: compiled from authors’ data and Platts. Map composed in
ESRI ArcGIS.



17

• Greece receives its gas from diverse sources,
and thus is resilient to the scenarios we anal-
yse. It gets most of its gas from Russia (65.2%),
from Turkey (16.4%) and LNG (18.4%);

• Ireland gets its gas from the UK and is unaf-
fected by our scenarios, since the UK is a secure
source in our model;

• Switzerland acts like a hub between South and
Northern Europe, so it has very good access to
network capacity;

• Ukraine is a major transit route for gas to Eu-
rope;

• Latvia and Finland have a relatively small pop-
ulation, good access to network capacity and
are very close to Russia;

• Surprisingly, Belarus does better when Ukraine
is removed from the network. The apparent
contradiction is solved by realizing that Eu-
rope’s supply from Russia has been historically
built around Ukraine. Hence, Ukrainian routes
have higher capacity and shorter routes to cen-
tral Europe than routes that pass through Be-
larus. In contrast, when Ukraine is removed
from the network, routes through Belarus be-
come the first choice to supply central Europe;

• Belgium draws its high energy security from
diversification of supply. It gets its gas from
the Netherlands (42.5%), from Norway(48.7%,
including LNG), Russia (2.8%), Germany
(1.2%), and the UK (4.8%).

At urban level:

• Surprisingly, Rome seems to gain slightly from
removing Libya. Rome is approximately in the
middle of the Italy, and the country is sup-
plied both from the South and from the North.
When Libya is removed there is no need to
transport gas from the South to the North of
Italy and this frees capacity to bring more gas
from the North to Rome;

• Unexpectedly, Berlin gains from the removal
of Poland. Germany is transporting gas to
Poland. When Poland is removed, the capac-
ity that is freed can be used for German cities
located close to the Polish border, including
Berlin;

• Finally, Dublin is resilient to all scenarios be-
cause it gets all of its supply from the UK, and
we do not have any scenario affecting the abil-
ity of UK to supply gas.
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Table 1. Summary of notation
Indexes:
i Link index
j Path index
m Exporting country
n Importing country
k Node index in an exporting country
l Node index in an importing country
Extracted at network level:
η Number of links in the network
di Diameter of link i (units: in; vector with dimension η)
ci = 0.56d2.5i Capacity of link i. The exponent 2.5 is found from data [20],

and the prefactor is obtained by calibrating the present baseline
scenario to match the Tmn flow matrix
(units: Mm3/year; vector with dimension η)

li Length of link i (units: km; vector with dimension η)
Bij Link-path incidence matrix. Bij = 1 if the link i belongs to the path

rj and Bij = 0 otherwise (matrix with dimensions η × ρ)
bi =

∑ρ

j=1 Bij Number of paths that pass through link i (vector with dimension η)
Extracted at country level:
ν Number of countries
sm Number of (source) nodes in an exporting country m
tn Number of sink nodes in an importing country n
gn Number of Liquefied Natural Gas (LNG) terminals in

an importing country n
Tmn Volume of gas received by an importing country n from

an exporting country m and LNG (matrix with dimensions: (η + 1)× η)

T̂mn =
{

1 if Tmn is positive
0 otherwise Binary matrix with zero entries if there is no transport between

countries m and n
Znl Population associated with sink node l of importing country n

(matrix with dimensions ν× [Number of Voronoi and urban sinks])
zn Population of an importing country n
Computed for the routing:
ρ Number of paths on the network
rm,k,n,l Path connecting source node k in an exporting country m with

sink node l in an importing country n, where k = 1, . . . ,Φmn if m is
an exporting country and k = 1, . . . , gn if m is LNG

rj Paths are also indexed by an integer, to simplify the notation
used in the congestion control algorithm (vector with dimension ρ)

hi = ci/(1 + bi) Share of capacity allocated to each path passing through link i
at the beginning of the heuristic rerouting

Dmnl Demand of sink l in an importing country n satisfied by an
exporting country m

Dmnl =
⌊

Dmnl

min(Dmnl)

⌋
Number of identical paths between a source and sink pair,

each having demand min(Dmnl)

l̃i =
(

〈hi〉
hi

)α

li Effective length of link i
←→
lj Effective length of path j (vector with dimension ρ)
Parameters:
α = 0.03 Exponent of 〈h〉/h in equation (S4) (see also Figure S6)

Φmn =
{

min(10, sm) if m is a country
gn if m is LNG If m is a country, we connect each sink node to the min(10, sm)

geographically closest nodes in an exporting country m
(distance measured along network paths); if m is LNG, we connect
each sink node to the gn LNG terminals in an importing country n.

Congestion control algorithm:
fj Path flow on path j (dimension ρ)
µi Price on link i, and dual of fj (vector with dimension η)
pi Price function on link i (vector with dimension η)
qi Inverse of pi (vector with dimension η)
L(f, µ) Lagrangian function of the primal problem
V (µ) Lagrangian function of the dual problem
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