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Appendix

Data

Our data is the publicly available annotated and quantified Illumina sequencing data provided by Park et
al[3]. It consists of two replicates measured in five different developmental stages in shoot meristems. In
our time series analysis, we use the mean of the replicated measurements. We made the explicit assump-
tion that we do not expect substantial fluctuations between the measurements and used linear interpo-
lation between the points. This is necessary to avoid fittings that perfectly fit the actual measurements,
but show unwanted oscillations between the data points. From the data, we extracted the measurements
of the seven genes: Solyc09g005070.1.1, Solyc11g069030.1.1, Solyc11g010570.1.1, Solyc03g118160.1.1,
Solyc02g077390.1.1, Solyc02g081670.1.1, and Solyc09g090180.1.1 (corresponding to UF, BL, J, FA, S,
AN, TMF).

Mathematical Model

We try to capture the dynamics of the seven gene network using a model that consists of a system of
seven linear ordinary differential equations (ODEs). We remark that using a more complex non-linear
model will more than double the number of unknown parameters, which would not be sensible in the light
of the currently available amount of data. Here we write down the explicit set of ODEs corresponding to
the initial network topology.

In the equations, the variable x1 corresponds to node 1, variable x2 to node 2, etc. The nodes
correspond to genes as indicated in Figure 1. We recall that an arrow in the network corresponds to
a parameter in the ordinary differential equations that represent the system. For example, parameter
m12 corresponds to an arrow from node 2 to node 1 and so forth. A parameter mii corresponds to the
degradation of variable xi. The following equations correspond to gene interactions given in the original
network topology in panel A of Figure 1:

ẋ1(t) = m11x1(t) +m12x2(t)

ẋ2(t) = m21x1(t) +m22x2(t)

ẋ3(t) = m31x1(t) +m32x2(t) +m33x3(t) + αm35x5(t)

ẋ4(t) = m43x3(t) +m44x4(t) + αm45x5(t)

ẋ5(t) = m53x3(t) +m54x4(t) + αm55x5(t) +m56x6(t) +m57x7(t)

ẋ6(t) = m63x3(t) +m64x4(t) + αm65x5(t) +m66x6(t) +m67x7(t)

ẋ7(t) = αm75x5(t) +m76x6(t) +m77x7(t) ,

(1)

where for the S. lycopersicum, α = 1 and for the s mutant α < 1 to present the lower activity of the
S-gene. On the other hand, we let the S. peruvianum to have its own independent parameters pij and
assume only that the network topology (arrows) and the signs (+ for activation, − for inhibition) of the
parameters are equal.

To fit the solutions equations (1) to data, we use the NMinimize function of Mathematica, which does
global minimization without specified initial points or constraints. NMinimize can employ 4 algorithms:
Nelder-Mead, simulated annealing, random search and differential evolution, but in our experience, typi-
cally the best results were obtained by not specifying the particular method and letting NMinimize make
the decision internally. In parallel, we did 200 optimizations starting from different initial guesses using
the lsqnonlin of Matlab, that employs as default the trust-region-reflective algorithm. The distribution
of the optimal parameters depends on the value of the accepted residual and as the residual decreases,
the parameter distribution converges to a narrow peaked multivariate distribution as can be seen in the
panel B of Figure 6.
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Perturbation analyses

Fisher information criterion

To investigate which parameters, have maximal influence on the interactions in the system, we did two
types of computational perturbation experiments. In designing theoretically optimal experiments, a
popular tool is the so-called Fisher information criterion (FIM)[38].

FIM =

∫ t2

t1

∑

ij

(

dxi(t)

dmj

)T

Q−1

(

dxi(t)

dmj

)

dt , (2)

where t1 is the first observation time point, t2 the last time point and matrix Q normally contains the
standard deviations of the measurement noise on the diagonal. In our case, we are focusing on the ratios,
i.e., relative influences of the parameters and therefore replace the Q with an identity matrix I7×7. Fisher
information integrates the total variation in the solution curves xi(t), resulting from the perturbation of
each parameter mj. This information value is computed at the optimal point m = mopt, and it gives
information on the local effect of the system, especially about the degree by which a parameter can
influence the system across the time. We used the Fisher information criterion to quantitatively compare
the amount of observable effects that we are likely to obtain from different experimental set-ups. We
have summarized the Fisher information values in Table S1. From this table we conclude that the most
informative parameter in this sense is m53, which connects J to S. Actually, almost every significant
value is either connected to J or S, suggesting that modifications targeted to these two genes may be
most effective.

Effects of parameter perturbation on the peaking order

We investigated, how sensitive the order of expression peaks in time is to changes in parameters. We
perturbed each parameter up to ±20 % of its original value. In panels A and B of Figure S7 we illustrate
the sensitivity of the order of the expression peaks. Based on our model we can conclude that via
modest parameter perturbations such as up- or down-regulation of certain gene in the network it is not
possible to alter the delay in the expression peaks (of UF, BL and S) in s mutant compared to those in
S. lycopersicum without at the same time deteriorating the fit. On the other hand, we find that such
perturbations can indeed easily affect the delay in the expression peaks of the wild species. As can be
seen from the Figure S7, modest perturbation can cause the expression levels of the influential genes in
S. peruvianum to peak even earlier than in S. lycopersicum. The interpretation is that a black square
in panel A (B), indicating the theoretical possibility that a parameter perturbation can cause change in
peaking order, is in practice not valid if the corresponding square in panel C (D) is also black since then
this perturbation has already deteriorated the fit. We found that it is difficult to alter the peaking order
of wild type cultivated tomato and s mutant, while changing the order between cultivated tomato and
wild species is feasible via various perturbations. This indicates that the time delay in the expression
levels indeed is a consistent feature discriminating the highly branched s mutant phenotype from the wild
type, but not so for the wild species.


