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NAME
poses - poses machine learning tool

SYNOPSIS
poses -h|--help

       poses  moses  ‐d  data_file  ‐m  model_file ‐p target_variable [‐e fit‐ 
ness_evals] [-F feature_selection_options] [-n output_levels] [-t
thresholds] [-l lower_neutral] [-u upper_neutral] [-M moses_options]
[-D delta] [-s max_levels] [--runs num_runs] [-V] [--mpi num_procs]
[--normalize-counts]

poses inference -m model_file -p target_variable -c testcase_file
[--report-levels]

poses cross-validate -d data_file -p target_variable [-e fitness_evals]
       [‐f   number_of_folds]   [‐g   num_fold_sessions]   [‐F  feature_selec‐ 

tion_options] [-n output_levels] [-t thresholds] [-l lower_neutral] [-u
upper_neutral] [-M moses_options] [-D delta] [-s max_levels] [--runs
num_runs] [-V] [--mpi num_procs] [-r rand_seed]

poses sentiment -m model_file

poses wordle -m model_file -d data_file

poses voivar -d data_file -m model_file -p target_variable [-b] [-o
output_file]

DESCRIPTION
poses is a machine-learning tool based on the MOSES program learning
library. It provides, in a single interface, both the training and the
inference parts of machine learning, as well as integrating feature
selection and thresholding.

EXAMPLES
       poses moses ‐d bank.dat ‐m bank.model ‐pQ3 ‐e50000 ‐F"‐asim‐ 

ple -C30" -M"-v12 -Z1"
Train moses on the bank.dat dataset, and generate the bank.model
model file as output. Use the Q3 column in the dataset as the
dependent variable for regression. The -F flag specifies the
options that will be passed to the feature-selection command,
and the -M flag specifies the options that will be passed to the
moses command.



poses inference -m bank.model -pQ3 -c bank.hcs
Perform inference on the bank.hcs file, using the previously
learned bank.model file for the regression model.

OVERVIEW
poses provides a number of convenience and integration abilities on top
of the MOSES machine learning system. In particular, poses integrates

       the  feature‐selection and training stages into one, as well as provid‐ 
ing a data thresholding capability. poses also supports various post-

       training functions, including using the learned model to perform infer‐ 
ence. On compute clusters equipped with MPI (OpenMPI or MPICH2), poses
can distrubte processing to multiple nodes.

       moses  is  a program‐learning system: given a table of discrete or con‐ 
tinuous input values, and a target output value, it will attempt to

       learn an ensemble of combo programs that accurately reproduces the out‐ 
put, given the inputs. Thus, after training, each resulting program
(or 'model') can be used to perform inference on hitherto-unseen input
values. The combo language itself is a very simple language, intended
only for expressing and evaluating expressions consisting of arithmetic
and logical operators. See the moses man page for details.

To improve over-all accuracy on noisy datasets, and to reduce the
effects of unintended over-fitting, an ensemble of combo programs can
be trained on the input data. The inferred output is then obtained by
averaging over the predicted output values of each combo model.

feature-selection is a simple utility for performing feature selection
       on tables of input data.  It supports several different mutual‐informa‐ 
       tion‐based  algorithms  to  discover  relevant  features.  See the fea‐ 

ture-selection man page for details.

poses optionally performs thresholding to turn continuous-valued
datasets into boolean-valued datasets. This may be done on both input
and output features, so that the datasets passed to moses are purely
boolean. By default, thresholding is enabled; the thresholding of
input values can be disabled by specifying the -s0 option. The default
thresholding for input features is around the mean: a boolean value
indicates, true of false, whether an input value is above or below its

       mean.    Specifying the ‐D option will threshold input values into mul‐ 
tiple boolean features, in multiples of the standard deviation. The

       ‐s  option  is used to specify how many boolean features should be cre‐ 
       ated per continuous‐valued input feature.  The predicted (output)  val‐ 

ues are also thresholded; the -n and -t options may be used to set and
control these.



OPTIONS
Options fall into two classes: those for specifying inputs and outputs,
and those controlling the algorithm.

General options
-h, --help

Print option summary, and exit.

-V, --verbose
Generate moses and feature-selection log files. These will be
written to the current working directory.

Input and Output Specification Options
These options control how input data is specified and interpreted, and
how output is generated.

       poses  can read data files in one of two different formats: DSV (delim‐ 
iter-separated values) or sparse-CSV. The DSV format is a superset of
the commonplace comma-separated value format: the input can consist of
UTF8 data, separated by commas, tabs or whitespace. The appearance of
# ; or ! in the first column denotes a comment; comment lines will be
ignored. The first non-comment row in the file (if any) is taken to
hold column labels.

The sparse-CSV format consists of rows in the form val1, val2, val3,
       key1 : kval1, key2 : kval2.  The initial columns are the  "fixed"  col‐ 

umns; here there are three fixed columns. These are followed by colon-
separated key-value pairs. All entries must be comma-spearated; tab
and whitespace-delimited files are not supported. The key-value pairs
must have whitespace on both sides of the colon, else the colon will
not be recognized as the key-value separator. The first non-comment
line in the file is assumed to be column labels for the fixed columns.

The target column is specified with the -p option with a column name.

-d filename, --data-file=filename
The filename specifies the input data file. The input table must
be in DSV or sparse-CSV format, as described above. This option
may be used multiple times, to specify multiple files. These
files will be concatenated to form the overall input dataset.
Sparse and non-sparse files can be mixed together. All files
must contain one column that is the target variable.



-m filename, --model-file=filename
The filename specifies the model file. For the moses mode, the
model file will be written when training is completed. For the
other modes, the model file is used as input, and is assumed to
have been previously created by poses in the training mode.

-p varname, --target-variable=varname
Specify the name of the variable to predict; this should be one
of the column labels in the input dataset. That is, the first
non-comment row of the input dataset should consist of column

              labels.   One  of the columns is presumed to contain the "depen‐ 
dent variable" or the "target variable" for regression. This
flag is used to name that variable.

-c testfile, --test-case-file=filename
The test file specifies the test-case file. This file contains
the data on which the inference command will perform inference;
it is a required option for this command. The test-case file
must consist of colon-separated key : value pairs, one per line.
Lines beginning with # ; or ! will be treated as comments and

              will be ignored.  This flag can be used multiple times to  spec‐ 
ify multiple files; a distinct inference will be made on each
input testcase file.

Training Algorithm Control Options
       These options provide overall control over the training algorithm  exe‐ 

cution.

-F opts, --feature-selection-opt=opts
              Specify  options  to be passed to the feature‐selection pre‐pro‐ 

cessor. If no options are specified, then feature selection
will not be performed. The full set of feature-selection

              options are documented in the feature‐selection man page.   Fea‐ 
              ture  selection  is used to winnow down the total number of fea‐ 

tures, by discarding those that seem to be uncorrelated with the
target variable. Performing this filtering can greatly reduce

              the learning time, at the risk of possibly discarding some ques‐ 
tionably relevant data. To pass multiple feature-selection
options, they must be surrounded by double quotes. So, for
example, -F "-ammi -C15".

-M opts, --moses-opt=opts
Specify options to be passed to the moses program learner.
MOSES has a large number of options that control its behavior
and performance. See the moses man page for details. To pass
multiple moses options, they must be surrounded by double
quotes. So, for example, -M "-v12 -Z1".



-e fitness_evals, --fitness-evaluations=N
              Specify  the  number of fitness evaluations that MOSES will per‐ 
              form while searching for a model of the input dataset.  In  gen‐ 

eral, the greater the number of fitness evaluations, the better
              the model; see however, comments about over‐fitting in the accu‐ 
              racy  section, below.  The default value is 1000;  however, rec‐ 
              ommended values are in the range of ten thousand  to  many  mil‐ 

lions.

--runs=number_of_runs
Specify the number or MOSES runs to perform when building an

              ensemble of models with the training  or  cross‐validation  com‐ 
mands. Each run will result in a handful of combo programs
being created that model the data. By specifying a reasonably
large number of runs (ten to one-hundred), the resulting ensemble
of models will smooth out or average over the effects of
over-fitting to a noisy dataset. During the inference stage,
the average of all the models will be reported as the predicted
output. The confidence of a prediction is then reported as the
fraction of all models that agreed on the majority-vote answer.

-r rand_seed, --rand-seed=N
Specify the initial random number seed for the pseudo-random
number generator. The random number generator is used only when
performing random selection for the cross-validate command.

Bag of Word Phrases Support
poses has several options that can be used when the input dataset is a
bag of words or a bag of word-phrases. In this case, the dataset is
assumed to consist of words (or phrases) and a count; that is, columns
correspond to distinct words, and column entries are the word-count for
that record.

--normalize-counts
Normalize the input dataset to make it independent of the record
size. This is done by dividing all counts by a fixed constant,
so that the most frequent word (in the entire dataset) occurs an
average of just once per record. The goal of normalization is
to overcome differences of size between the training records,
used to create the model, and the inference set size. Without
normalization, the size of the inference set (the number of
words in the inference set) must be more or less the same as
that of each of the original training records. With normalization,
inference can be performed on test records whose overall
size differ significantly from those used in the training set;
in this case, the size of the test set is also normalized to the
largest count appearing in the test set, before the inference is
made.



Target Variable Thresholding
poses has several different modes of training, depending on the type of
the target variable, and whether binary classification (thresholding)
is requrested.

By default, floating-point target variables are thresholded into three
ranges: low, medium and high, centered upon the median value of the
target variable, with the low and high thresholds located at 0.8 and
1.2 times the median value. The target variable is "booleanized" at

       each threshold: that is, training will create a binary classifier, dis‐ 
cerning whether the target is above or below the given threshold. For
N thresholds, this requires N training sessions; and although poses
will manage these automatically, the overall training time will
increase in proportion to the number of thresholds. The number and
location of thresholds can be specified with the -n, -l, -u and -t
options, described below.

Thresholding on floating-point target variables can be disabled by
specifying the -n1 option, to indicate that only one level (range)
should be used. In this case, only one moses training session will be

       performed; note, however, that training moses on  floating‐point  vari‐ 
ables can run slower than training on boolean values.

Enumerated target variables can similarly be handled "natively" by
       moses, or by converting them into a set of boolean classification prob‐ 

lems. Enumerated variables are those that take on one of a discrete
set of string values (such as "red", "yellow", "green"). If the -n1
option is specified, then only one moses training session is performed,
with moses attempting to find a classifier that is accurate for each of
the target values. Alternately, by using the -n and -t options,
poses will split up the problem into multiple binary classification
tasks, with one classification task for each enum value. If -n is
used to specify fewer "levels" than there are enum values, then only
the most populous enums will be classified (that is, binary classifiers
will be created only for those enums that appear the most frequently in
the dataset). Alternately, the -t option can be used to explicitly
name the target values to be used during binary classification.

-n num_levels, --number-of-levels=num_levels
              Specify the number of levels for the target variable.   Specify‐ 

ing num_levels to be 1 disables thresholding; the default value
is 3. For floating-point-valued targets, if the locations of
the thresholds are not explicitly specified (with the -t, -l or
-u options), then they are computed automatically. For -n2, the
single threshold is placed at the median value of the target
variable; or, if the -t option was used, the threshold is placed
there. For -n3, the two thresholds are placed at 0.8 and 1.2



times the median value; or, if a single -t option was used, the
two thresholds are located at 0.8 and 1.2 of that value. For
larger n's, thresholds are created at evenly-spaced values

              between the smallest and the largest observed values of the tar‐ 
get. For enum-valued targets, and num_levels greater than one,
then binary classifiers will be created for the num_levels most
populated enums in the dataset.

-l low, --lower-neutral=low
For floating-point targets, specify the location of the lower
threshold. This will be located at 't_md * (1 - low)'. Here,
't_md' is either the median value of the target, or, if the -t
option was used, it is the value specified by -t. The default
value for low is 0.2. It is ignored if the number of output
levels is not 3, or the target is not floating point.

-u hi, --upper-neutral=hi
For floating-point targets, specify the location of the upper
threshold. It will be located at 't_md * (1 + hi)'. Here,
't_md' is either the median value of the target, or, if the -t
option was used, it is the value specified by -t. The default

              value for hi is 0.2.  It is ignored if the number of output lev‐ 
els is not 3, or the target is not floating point.

-t threshold, --threshold=threshold
For floating-point targets, this defines an output threshold for
a binary classifier. That is, a classifier will be created that
returns true whenever the targetVar >= threshold. If n levels
were specified with the -n option, and n is greater than 3, then
the -t option must be used n-1 times. For enum-valued targets,
this option can be used to explicitly name which target values
should get a binary classifier. Use multiple instances of the
-t option, one for each value.

--report-levels
If specified, then the level number, instead of the predicted
value will be reported by the inference command. Level numbers
range from 0 to N-1 where N is the number of output levels
(specified by the -n option).

Input Variable Thresholding
poses optionally applies thresholding to each continuous-value input
feature 'f', to convert it into a single boolean-valued feature 'f_0'.
This binary feature takes on values of T or F, indicating whether or
not 'f' is above or below it's mean value 'm_0'. That is, the binary
feature 'f_0' indicates whether 'f' lies in the interval (mean(f),
+inf) or not.



Thresholding is performed by default, with exactly one binary feature
created for each input feature. The thresholding of input values can
be disabled by specifying the -s0 option on the command line. The

       speed of learning and the accuracy of the results can sometimes be dra‐ 
matically affected by whether or not thresholding is enabled, and the

       number of thresholds used.  Classification will typically be more accu‐ 
rate, if additional thresholding is done. The number of thresholds to
use may be specified with the -s option, and their locations with the
-D flag.

Each new boolean feature 'f_n' will be a binary indicator of whether
'f' lies above or below (to the right or left) of the threshold t_n =

       mean(f) + delta * n * stddev(f).  Here, 'stddev' is the standard devia‐ 
tion of 'f', while 'mean' is the mean value.

-D delta, --delta=delta
Specify a value delta > 0 indicating the distance between
thresholds. The value is interpreted as a fraction of the
standard deviation of the input variable. If not specified, the
delta value is assumed to be 1.0.

-s num, --number-of-thresholds=num
Specify the number of thresholds to create. If num is zero,
thresholding of input values is disabled. If not specified, the
default is to create one threshold, at the mean value of the
input feature. If num is even, then the threshold 't_0' is not
created (so, for example, for -s 2, only 't_1' and 't_{-1}' are
created). If -s is not specified, but the -D option gives a
positive value, then enough thresholds are created to cover the

              entire range of observed values for the  particular  input  fea‐ 
ture. If neither the -s or the -D options are given, then only
a single threshold 't_0' is created at the mean value of 'f'.

If the values of an input feature are strangely distributed, and
num is large, it can happen that fewer than num thresholds will
be created; this will occur when there are no values beyond the
threshold.

Cross-validation
The cross-validate command may be used to perform cross-validation of
the of the learned models against hold-outs from the dataset. This is
useful for evaluating the expected accuracy of the learning process,
and to test for signs of over-fitting.



Cross-validation is performed by splitting the input data-set into two
parts: the train subset, and the hold-out or test subset. By default,
these are 4/5'ths and 1/5'th of the dataset size. A model is then
trained on the train subset. The resulting model is evaluated for
accuracy (and precision, recall, when appropriate) against both subsets
(separately). The accuracy of the model on the train subset simply
indicates how well the model was able to fit the training data. The

       accuracy  of the model on the test subset is more interesting: it indi‐ 
cates how well the model is able to predict and classify previously-
unseen data.

If the data is relatively noise-free, and the length of training was
sufficiently long, the accuracy on the train subset should be very
high. A model with good predictive ability will score well on the test
subset, and ideally, close to that of the train subset. A sharply

       worse accuracy indicates over‐fitting:  the model is encoding some pat‐ 
tern in the train subset that simply does not exist in the test subset.

The -f num_folds option is used to specify the number of folds to be
performed during cross-validation. By default,
num_folds=5. If N=num_folds, the validation will be performed N

times, with each evaluation done on a train set of size (N-1)/N and
test set the size of 1/N, rotating over each of the N equal-sized test
sets. That is, the input dataset is split into N pieces. For each
fold, N-1 of these are grouped into the train set, with the last used
for the test set. For the next fold, the pieces are regrouped in
cyclic, round-robin fashion, for a total of N folds and N validations.
Note that, as a result, the cross-validate command will typically run

       about  N  times longer than the moses command.  The final printed accu‐ 
racy results will be for the sum (average) of the folds.

Run-time can be shortened by explicitly specifying fewer validation
sessions, using the -g num_sessions option. By default, the number of
validation sessions is equal to the number of folds, as explained

       above.  Specifying  a smaller number cuts short the round‐robin valida‐ 
tion tournament.

A number of sessions that is larger than the number of folds can be
specified. In this case, random selection is performed instead of
round-robin selection. The fractional sizes of the train and test sets
are still (N-1)/N and 1/N as before; however, different records are
allocated to the one or other based on a (pseudo-) random number draw.
The pseudo-random number seed can be varied with the -r option.

The printed accuracy matrix presents a bin-count of expected answers,
in rows, versus the results obtained by the classifier, in columns. A

       perfectly  accurate classifier would have entries only along the diago‐ 
nal. That is, a perfect classifier would always produce the expected



result. Off-diagonal entries are those where the classifier produced
one result, but the correct answer was otherwise. The printed matrix
is followed by a single floating-point number summarizing the fraction
of the entries on the diagonal (the sum of diagonal entries divided by
the sum of all entries).

When the classifier is trained on only two output values, then additional
information is printed: the recall of the model, and the precision. Recall is
defined as the fraction of positive results that were
correctly identified as being positive. Precision is defined as the
fraction of positive results, excluding incorrectly identified negative
results. The definitions used here are the standard text-book definitions
for these two quantities.

Inference
The central idea of training a model on a dataset is to be able to
later use that model to perform inference on new, previously unseen,
test data. The inference command provides this ability. In order to
do inference, both a model and a test-case file must be specified. The
inference command applies the model to the test case, and infers the
most likely classification for the case. This is printed on stdout,
followed by a confidence ranking in this result.

Inference is actually performed on an ensemble of models, and the
reported confidence value is the fraction of the ensemble that agrees
on the output. During training, several or even many models of the
training data are built, depending on the setting of the --runs option.
Each of these models can be used to make an inference on the test case.
The models usually, but not always, agree. The reported result is
determined by voting: it is the most popular one of all the different
results. The confidence is then the fraction of the vote that went to
this result. For binary classifiers, the confidence is never less than
1/2; for multi-valued classifiers, the confidence is greater than 1/N
of the number N of different possible outputs.

Sentiment and Wordles
poses supports two different commands that help provide some insight
into the content of a model. The sentiment command prints a ranked list
of positive and negative sentiment keywords appearing in a model.
These are the words that appear in one or more of the ensemble models,
ranked by how often they appear in the ensemble. A keyword is considered
to be positive if it appears as a greater-than threshold, and negative
if it appears as a less-than threshold. Thus, if a model
requires that the word "happy" appear more than three times, then it is
considered to be a postive keyword. Any given word might appear as
both a positive or a negative keyword: some clause may require it to
appear more than a certain number of times, while a different clause
might require it to appear less than that. If the input values are not



thresholded (the -s option specified zero) then there is no distinction
between positive and negative, and only one list of keywords is
printed, ranked by how often they appear in the ensemble models.

The wordle command is similar, but it shows wordcounts obtained from a
dataset. It extracts a list of positive keywords from the model, and
the corresponding word counts from the dataset. These keywords and
counts are printed in ranked order, for each cohort. Here, a cohort is

       defined as that subset of the dataset that shares a common target (out‐ 
put) value; thus, the word counts are shown, subtotalled for each
cohort.

MPI Support
poses is able to make use of MPI interfaces (OpenMPI or MPICH2) to
improve processing time. MPI, an abbreviation for the "Message Passing
Interface" standard, is used to distribute processing across multiple

       CPU nodes in a compute cluster.  It is commonly used in scientific com‐ 
puting to distribute algorithms on supercomputers. Because the primary

       algorithm used in poses belongs to the class of  "embarassingly  paral‐ 
lel" algorithms, the operation of poses is easily speeded on compute
clusters.

In order to make use of this, the standard MPI system management tools
must be installed on the target hardware. In addition, a version of
the moses binary, compiled with MPI support enabled, must be
installed. The rest of this section assumes familiarity with basic MPI
job submission.

To enable MPI processing, simply include the --mpi=num_procs option for
       the  moses  or  accuracy  commands.for the moses or cross‐validate com‐ 

mands. CPU usage is maximized by setting the value of num_procs to
       2N+1, where N is the number of physical nodes in the cluster.  The dou‐ 

ble-counting helps make sure that all available CPU processing power
will be used; a single instance, although multi-threaded, may not

       always be able to make full use of all cores on a  single  node.   Pro‐ 
cessing is structured so that there is one master control or 'root'
process, which does very little work other than to coordinate the other

       'worker' processes, and to collect and collate results.  Thus, the set‐ 
ting --mpi=2 is the minimum setting that makes sense: one process will
be mostly idle, acting as a control, and one process will perform all
of the work.

Processes are started by issuing the mpirun command. This may be over-
ridden by setting the MPIRUN environment variable. The hosts file is
assumed to be located at ~/mpd.hosts. The location of the hosts file
may be over-ridden by setting the MPI_HOSTS environment variable.
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