
Developer and User Manual of ComboReduct

(draft)

Nil Geisweiller

November 3, 2008

Contents

1 Introduction 2

2 Installation 2

3 Folder overview 2

4 Combo language 3

5 Type checker engine 5

5.1 Type representation . 5
5.2 Implicit vs explicit inputs . 6
5.3 Arity . 6
5.4 Type inference . 6
5.5 Type checking . 7

6 Reduct engine 7

1

1 Introduction

ComboReduct is a library providing C++ data structures and algorithms to
manipulate a programatic language used in program evolution like MOSES.
That code was initialy integrated in MOSES but has been split to be reused in
other program evolution project.

2 Installation

For compiling MOSES you need

� a recent gcc (4.x or late 3.x)

� the boost libaries (http://www.boost.org)

� the CMake package (http://www.cmake.org/HTML/Index.html)

� the LADSUtil library (TODO : place the urls)

For compiling Comboreduct, create a directory bin (from the root folder
of the ComboReduct distribution), go under it and run "cmake ..". This will
create the needed build �les. Then, make the project using "make" (again from
the directory bin). Then make install (you may need the root provilege) to
install it.

More detailed information about the intallation can be found in INSTALL
text �le in the root directory.

3 Folder overview

In this section we give a bief explanation of the project directory tree. At the
root we have:

� doc containing that manual

� sample containing a few �les with thousands of combo expressions used
to test the reduct engin

� scripts containing a script run_utest.sh to run test units

� src containing the source code of the library

� test containing the test unit code

Under src/ComboReduct the code is organized in the following folders:

� ant_combo_vocabulary containing an example of the use of ComboReduct
in the context of the ant problem

� combo containing the code de�ning the data structure of combo programs
and the type checker engine.

2

� crutil containing some common de�nitions

� main containing a bunch of executable to test ComboReduct functionali-
ties

� reduct containing the code of the Reduct engine

Now we will go through each component of ComboReduct, that is Combo a
programatic language, its type checker and the Reduct engine.

4 Combo language

Combo is a programatic language dedicated to program evolution. It contains
primitives to handle boolean operators, arithmetics and action/perception of an
iteractive agent.

A Combo program is represented by a tree where each node is either an
operator, a constant or a procedure call and where operands of operators are
its children.

The C++ structure for it (the C++ code in under src/ComboReduct/combo/vertex.h)
is:

typedef tree<vertex> vtree;

where vertex is de�ned as a boost union type (variant):

typedef boost::variant<builtin,

wild_card,

argument,

contin_t,

action,

builtin_action,

perception,

definite_object,

indefinite_object,

message,

procedure_call,

action_symbol> vertex;

� builtin is a enumaration of standard boolean-arithmetic operators and
constants, like and, or, +, log, etc.

� wild_card represented by _*_ is used for uni�cation when the program
output type is boolean.

� argument is a structure representing input arguments into a Combo pro-
gram, noted #1, #2, etc. For instance the following program (pre�x rep-
resentation) +(#1 #2), is the addition of two input arguments.

3

� contin_t is a
oat type.

� action is a pointer to an abstract class action_base (see src/ComboReduct/combo/action.h)
to be implemented representing the set of actions controled by the inter-
active agent, like for instance eat_food_ahead. The implementation of
action_base can also provide methods de�ning properties like, for in-
stance, if an actions always succeeds or is idempotent, etc. That set of
properties can be later used by the reduction engine to normalize Combo
programs containing user-de�ned actions.

� builtin_action is an enumeration of basic action operators like and_seq
(executes a sequence of actions until one fails or the sequence is com-
pleted), boolean_while (execute an action repeatedly while a condition
is met). For instance

boolean_while(is_hungry and_seq(look_for_food eat_food))

is a program that executes in sequence searching for food and eating food
until hungriness has gone.

� perception is a pointer to an abstract class perception_base (see src/ComboReduct/combo/perception.h)
to be implemented representing the set of perceptions of an interactive
agent, like is_hungry. The implementation of perception_base can also
provide methods de�ning properties like, for instance, if the perception
arguments are symetric or re
exif. That set of properties can be later
used by the reduction engine to normalize Combo programs containing
user-de�ned perceptions.

� definite_object is a pointer to an abstract class to be implemented rep-
resenting the set of de�nite objects existing in the world of the interacting
agent, like red_cube, green_ball. It is essentially a C++ string repre-
senting an identi�er, that is not containing space or seperator symbols.

� indefinite_object is a pointer to an abstract class to be implemented
representing the set of inde�nite objects pointing to de�nite object existing
in the world of the interactive agent, like random_ball, nearest_cube.

� message is class containing a message, it is a C++ string that can contain
any symbol in it including space and other separators.

� procedure_call is a pointer to a Combo program, Combo handles recur-
sive and mutually recursive procedure calls. ComboReduct can load a set
of procedures. The syntax used is

procedure_name(arity) := procedure_body

� action_symbol is a pointer to an abstract class to be implemented rep-
resenting symbols used to caracterize actions, for instance in the context
of a virtual pet with the action scratch the action symbol neck can be
used to form scratch(neck)

4

5 Type checker engine

5.1 Type representation

ComboReduct contains a type checker engine, to check and infer types. A type
is also a tree just like a program but the nodes referes to type operators and type
constants instead of actual operators and constants. So type tree is de�ned as
follow (the code can be found at src/ComboReduct/combo/type_tree_def.h):

typedef tree<type_node> type_tree

Where type node is a C++ enumeration:

enum type_node {

lambda_type,

application_type,

union_type,

arg_list_type,

boolean_type,

contin_type,

action_result_type,

definite_object_type,

action_definite_object_type,

indefinite_object_type,

message_type,

action_symbol_type,

wild_card_type,

unknown_type,

ill_formed_type,

argument_type

};

There are 4 type operators, lambda_type to represent the abstraction of a func-
tion (like in �-calculus), application_type to represent the application of a
function (like the application operator of �-calculus), union_type to represent
the union of types and arg_list type to arbitrary large list of a given type.
The other types are rather self-explanatory but more explanation can be found
in the comments of the code.

So example a boolean function or arity 3 will be represented with the fol-
lowing type (_type su�x are omited for clarity):

lambda(boolean boolean boolean boolean)

The �rst 3 boolean design the input types and the last boolean designs the
ouput type. For instance the combo program and(#1 #2 #3) has the type
above.

5

5.2 Implicit vs explicit inputs

A combo program does not necessarily need to use explicitely arguments #1, #2,
etc, to de�ne its inputs. A combo program is treated just like an operator, for
instance, not(boolean_if) will be treated as the function that takes 3 boolean
inputs and returns the negation of the result of a boolean if applied on them.
The type tree of such combo program is therefore

lambda(boolean boolean boolean boolean)

We say that just combo program has implicit inputs. As such any operator alone
is a combo program with implicit inputs. Some operators uses an inde�nite
number of the inputs of the same type (like +), there input types are described
by using the type operator arg_list, for instance the type tree of + is

lambda(arg_list(contin) contin)

A combo program can be made from both explicit (#1, #2, etc) and implicit
inputs the convention is that the explicit inputs are always enumerated at �rst
in the input list, no matter the order they appear in the combo program. For
instance the type of contin_if(and #1 #2) has type tree

lambda(contin contin arg_list(boolean) contin)

5.3 Arity

There is a subtlety in the calculation of the notion of arity in the type system
of ComboReduct which is worth mentioning here. When the number of input
arguments are �xed, that is the combo program takes exactly n input arguments
then the arity is n. On the other hand if the number inputs are n� 1 or more
(that is the type operator arg_list is involved in the list of the input types)
then the arity is �n.

5.4 Type inference

Type inference is performed by converting a Combo tree into a correspondant
type tree representing the abstractions and applications of the operators with
there operands, then that tree is reduced into a normal form to look more like
what we can call a procedure type signature.

For instance, the type tree of +(3 5) is

application(lambda(arg_list(contin contin) contin contin)

then we apply a normalizer that reduce the application of function with inputs
(a la �-calculus when a redex is eliminated by �-reduction) to obtain the type
contin.

There are of course several subtleties in that process which could be long to
describe in detail but many comments have been placed in the code explaining
that reduction process in detail.

6

5.5 Type checking

Type checking is operated by evaluating the inheritance between two types. So
for instance if one wants to check that the combo program

contin_if(and(#1 #2) 3 5)

it will �rst infer its type using the type inference engine, which is

lambda(boolean boolean contin)

then check if the infered type inherits the type we want the expression to have.
For instance if the type to check the expression against is

lambda(boolean boolean union(contin boolean))

then the inheritance checker will be able to assess that (the answer positive in
that example).

Once again the details and the assumptions made in the that process are
numerous and not described here but the code contains the comments that
explain them all in detail.

6 Reduct engine

One of the powerful aspects of ComboReduct is the Reduct engine, in charge of
reducing a combo program into a normal form, that is into a unique semantically
equivalent program. This is of great interest in program evolution as it, in
some way, factorizes the syntactic space into its semantics' therefore avoiding
reevaluating semantically equivalent programs. That is said it is important to
note that such normalization process is not feasable in general, indeed answering
whether two recursive functions are semantically equivalent is undecidable (and
even so does answering the equivalence of two primitive recursive functions).

But should even normalizing be possible in theory, in practice it has to
be fast, in the sense that the total cost of normalizing should be lower than
the cost of re-evaluating semantically equivalent programs for a given search.
Fortunately the reduct engine has been coded to be quite
exible and it is easy
to craft a reduction process for a given problem -by combining a set of hard
coded reduction rules- to get a good compromise between completeness and
speed.

The source �les at src/ComboReduct/reduct with su�x _rules contain
the code and the detailed explanation of the di�erent rules, and the sources
�les with su�x _reduction examples of how to combined thoses di�erent hard-
coded rules.

7

