
1

DCAPS Suicide Data Analysis: Mini-HOWTO February 15 2013
Linas Vepstas linasvepstas@gmail.com & Chris Poulin chris@patternsandpredictions.net

This mini-HOWTO briefly reviews how to use the POSES machine learning package to perform
data analysis for the DCAPS suicide data. This includes training of, validation of, and inference
on the model.

Description of the data

The Veterans Administration data is available in a pair of files, named "va12-pairs-allowed.csv"
and "va32-pairs-allowed-asimple.csv". These files were obtained from patient medical records
in cooperation with the Dartmouth-Hitchcock Medical Center (DHMC). These files are in the
style of a "bag-of-phrases", containing word and word-pair counts derived from free-text
medical records. The original medical records are confidential, and cannot be moved/copied
outside of DHMC. The bag-of-phrases data is slightly less sensitive, but still confidential.

The study contains records for three groups of patients: groups 1, 2 and 3, corresponding to
the control, suicide and psych groups, respectively. There are 70, 69 and 70 patient records in
each group. The data files contain one row per patient; that row contains the word-counts for
the medical records for that patient. Each row is labeled with the group that the patient
belongs to; that label is in the first column. The file "va12-pairs-allowed.csv" contains data for
groups 1 and 2 only, and thus has a total of 70+69=139 records total. The file "va32-pairs-
allowed-asimple.csv" contains data for groups 3 and 2 only, and again consists of 139 records
total. In this later file, the group 3 records are labeled as belonging to group 0 (instead of 3);
this re-labeling is done so that the psych group can be handled as "negatives" (non-suicides) as
opposed to "positives".

Using the POSES machine learning tool

The POSES Machine learning tool and its use is documented in three different files and
directories, included with the POSES binary and source distributions. These include the
"README.txt" file, which provides a general overview, install instructions, and some basic
examples. The "man/poses.1" file provides a standard Unix man page, documenting the
command-line usage and flags. The "example-bank" directory contains a tutorial and example
datasets based on a banking customer satisfaction survey. The remainder of this HOWTO
presumes a thorough familiarity of the POSES system. The man page should be consulted to
understand the meaning and operation of each command line flag.

Training

Training for the group-3 vs. group-2 discriminator can be performed as follows:

poses moses -d va-grp-32.csv -m model-32.mod -p group -e160000 -n2 -s1 -F"-C3000 -asimple
-j4" -M"-j4 --hc-max-nn-evals=5000 --enable-fs=1 --fs-target-size=90 -B0" --restarts=10



2

This instructs poses to:
*) use the va-grp-32.csv file, (the -d option)
*) output the final model to a file called "model-32.mod" (-m option)
*) use the first data column as the target (-p group option)
*) Perform no more than 160K training evaluations (-e option)
*) Generate only two outputs (negative/positive) (-n option)
*) Threshold the input data with one threshold (-s option)
*) Pre-select 3000 input features (the -F option)
*) Dynamically select 90 input features (--fs-target-size)
*) Build an ensemble of ten models (the --restarts option)
*) Assume a quad-core CPU (-j4)

Note that, with the above settings, training may take several hours or longer on a large,
capable multi-core processor. The precise training time will vary, depending on how the
various options and values described above are set.

The above was tested on a 4-core Intel i3-2105 and took approximately an hour to complete.
Maximum memory usage was approximately 600MB.

The model files delivered to Raytheon BBN used an ensemble of 100 models, and not 10 as
shown above. Warning: Building such models will take roughly ten times longer.

K-Fold Cross-Validation

Five-fold cross-validation for the group-3 vs. group-2 dataset takes a very similar form, as
follows:

poses accuracy -d va-grp-32.csv -m model-32.mod -p group -e160000 -n2 -s1 -F"-C3000 -
asimple -j4" -M"-j4 --hc-max-nn-evals=5000 --enable-fs=1 --fs-target-size=90 -B0" -f5

Notice that all of the flags are the same, except that the "accuracy" indicates that cross-
validation should be performed, and that -f5 indicates that the cross-validation should be 5-
fold.

Note that five-fold cross-validation repeats the training step five times, thus, cross-validation
will typically run five times longer than training a single model. Note that in the previous
example above, ten models are trained; thus, this particular example will only take half
the time.

ROC curves

In order to create ROC curves, multiple commands such as the following may be used:



3

poses accuracy -d va-grp-32.csv -m model-32.mod -p group -e160000 -n2 -s1 -F"-C3000 -
asimple -j4 -Hprerec -Q2.0 -A1.0 -q0.65" -M"-j4 --hc-max-nn-evals=5000 --enable-fs=1 --fs-
target-size=90 -B0" -f5

The primary difference between this and the previous command are a set of Moses (the
genetic programming library dependency) options that tell it to use a different scorer. The
default scorer attempts to maximize accuracy (that is, to minimize the overall total of false-
positives and false-negatives); this, however, is not suitable for generating ROC curves, where
non-minimal false-negatives are not only desired, but are fundamental to the definition of an
ROC curve.

The scorer used here is the "prerec" scorer (-Hprerec option). This scorer attempts to
maximize the precision, while holding the recall above a minimum desired value. In the above
example, the minimum requested recall is 0.65 (the -q0.65 option). The definition of precision
and recall used here is industry standard; see for example Wikipedia for details. The two
additional moses options, -Q2.0 and -A1.0, set the recall maximum bound to 1.0 (-A1.0 option)
and set the "strictness" or "hardness" of the scorer in respecting the minimum desired recall.

In order to generate an ROC curve, one must re-run each cross-validation once, for each
nominal recall value. Since each cross-validation may take 2 to 12 hours wall-clock time,
generating an ROC curve with ten points may take 20 to 120 hours wall-clock time. Note that
training for low recall values can be extremely quick: typically, a minute or less for recall rates
of less than 0.5 or so. Thus, a cross-validation run for -q0.65 may take 5-15 minutes, one for -
q0.75 may take an hour, while those for -q0.95 may take many hours or even a day.

Typical output

Below follows some typical output. It was obtained with exactly this command:

poses accuracy -d va-grp-32.csv -m model-32.mod -p group -e40000 -n2 -s1 -f5 -F"-C3000 -
asimple -j4" -M"-j4 --hc-max-nn-evals=5000 --enable-fs=1 --fs-target-size=90 -B0" -V

This command took only a few minutes to run. It ran relatively quickly because the total
number of scoring function evaluations was cut back to 40 thousand from 160 thousand.
Cutting back on the number of evaluations can result in a less accurate model.

The output generated was:

Train matrix:
Classifier results in columns:
0.496402877698 1.4964028777
Expected results in rows.
275 5
1 275



4

Accuracy : 0.989208633094 (550 correct out of 556 total)
Precision: 0.982142857143 (275 correct out of 280.0 total)
Recall : 0.996376811594 (275 correct out of 276.0 total)
FP Rate : 0.0178571428571 (5 false pos out of 280.0 total)
F_1 Score: 0.989208633094
F_2 Score: 0.993497109827
----
Test matrix:
Classifier results in columns:
0.496402877698 1.4964028777
Expected results in rows.
43 27
22 47
Accuracy : 0.647482014388 (90 correct out of 139 total)
Precision: 0.635135135135 (47 correct out of 74.0 total)
Recall : 0.68115942029 (47 correct out of 69.0 total)
FP Rate : 0.385714285714 (27 false pos out of 70.0 total)
F_1 Score: 0.657342657343
F_2 Score: 0.671428571429
----------------------------------------------------------------------

(The first confusion matrix reports the results of the classifier on the training set. The second
reports the results of the classifier on the test set.)

Inference

Given a test case document, we can then provide the ability to conduct a single inference. The
reported inference is currently an output of a linear number range of 0-2.

In the case of a Group 3vs2 classifier, a score of 0.4964028776981 would indicate the
psychiatric cohort, while 1.4964028777 would indicate suicidaility cohort classification.
While in the case of a Group 1v2 classifier, a score of 1.24820143885 would indicate the non-
psychiatric cohort, while 1.74820143885 would indicate suicidaility cohort classification. The
two command examples;

poses inference -m model-32.mod -p group -c testcase.dat |tee inference.out
1.4964028777 (suicidaility)
poses inference -m model-12.mod -p group -c testcase.dat |tee inference.out
1.74820143885 (suicidaility)

Pulling the inference output from the Linux VM (to a local Windows machine)

Download SCP: http://the.earth.li/~sgtatham/putty/latest/x86/pscp.exe

Run: pscp bnn@hostname:/home/bbn/inference.out c:\temp



5

Value of Information (VOI)

The VOI (Variables Of Interest) command extracts the variables used in the trained model,
and, given an input dataset, computes their mutual information, relative to the target
variable. We felt that reporting high VOI vars was useful for analysts understanding which
input variables contribute the most to the model. For readability, we truncated the reported
list to 10.This is accomplished with the command;

poses voivar -d va32-pairs-allowed-asimple.csv -m model-32.mod -p group -o model-32.voi
|tee voi.out

Results in;

voi(WAS_FRIGHTENING=1.41475102542)
voi(UPSETTING_IN=1.41475102542)
voi(UPSETTING_THAT=1.41475102542)
voi(WAS_HORRIBLE=1.41475102542)
voi(INFORMED_COLON=1.41229756021)
voi(CONSENT_COLON=1.41229756021)
voi(TEST_ALLOWS=1.41175766695)
voi(SATURATION_ROOM=1.41175766695)
voi(NURS=1.41175766695)
voi(PREPROCEDURE_DATE=1.41175766695)


