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Abstract

Meta-optimizing semantic evolutionary search (MOSES) is a new ap-
proach to program evolution, based on representation-building and prob-
abilistic modeling. MOSES has been successfully applied to solve hard
problems in domains such as computational biology, sentiment evalua-
tion, and agent control. Results tend to be more accurate, and require
fewer objective function evaluations, than other program evolution sys-
tems, such as genetic programming or evolutionary programming. Best
of all, the result of running MOSES is not a large nested structure or
numerical vector, but a compact and comprehensible program written in
a simple Lisp-like mini-language.
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1 Introduction

Meta-optimizing semantic evolutionary search (MOSES) is a new approach to
program evolution, based on representation-building and probabilistic model-
ing. MOSES has been successfully applied to solve hard problems in domains
such as computational biology, sentiment evaluation, and agent control. Results
tend to be more accurate, and require fewer objective function evaluations, as
compared to other program evolution systems. Best of all, the result of running
MOSES is not a large nested structure or numerical vector, but a compact and
comprehensible program written in a simple Lisp-like mini-language.

This document provides an overview of the core concepts, terminology, al-
gorithm and capabilities of MOSES. The �rst few sections provide a general
review, suitable for users and programmers alike, and should provide su�cient
grounding to allow users to feel con�dent in this tool. The remiander of the
document provides a quick overview of the internal structures of the code base,
and is intended for programmers interested in exploring modi�ed algorithms
and extensions.

The main MOSES website/wiki is located at http://wiki.opencog.org/w/Meta-
Optimizing_Semantic_Evolutionary_Search. Additional references can be found
there, as well as in the References section at the end of this paper. Moshe Look's
PhD thesis [6] is strongly recommended as primary material for anyone inter-
ested in additional details.

2 Copyright Notice

MOSES is Copyright 2005-2008, Moshe Looks and Novamente LLC.
It is licensed under the Apache License, Version 2.0 (the "License"); you

may not use this �le except in compliance with the License. You may obtain a
copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software dis-

tributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the speci�c language governing permissions and limitations
under the License.

3 Overview

MOSES performs supervised learning, and thus requires either a scoring func-
tion or training data to be speci�ed as input. As output, it generates a Combo
program that, when executed, approximates the scoring function. MOSES uses
general concepts from evolutionary search, in that it maintains a population
of programs, and then explores the neighborhood of modi�ed, "mutated" pro-
grams, evaluating their �tness. After some number of iterations, the �ttest
program found is output.
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More precisely, MOSES maintains a population of demes. Each deme is a
program with many adjustable, tuneable parameters. These adjustable param-
eters are colloquially referred to as knobs. Thus, �nding the �ttest program
requires not only selecting a deme, but also determining the best settings for
the knobs.

The MOSES algorithm proceeds by selecting a deme and performing random
mutations on it, by inserting new knobs in various random places. The best-
possible knob settings for the mutated deme are found by using using existing,
well-known optimization algorithms, such as hill-climbing, simulated annealing
or estimation of distribution algorithms (EDA) such as Bayesian optimization
(BOA/hBOA). The �tness of the resulting program(s) can be compared to the
�ttest exemplar of other demes. If the new program is found to be more �t, it is
used to start a new deme. Old dominated demes are discarded, and the process
then repeats.

All program evolution algorithms tend to produce bloated, convoluted, re-
dundant programs ("spaghetti code"). To avoid this, MOSES performs re-
duction at each stage, to bring the program into normal form. The speci�c
normalization used is based on Holman's "elegant normal form", which mixes
alternate layers of linear and non-linear operators. The resulting form is far
more compact than, say, for example, boolean disjunctive or conjunctive nor-
mal form. Normalization eliminates redundant terms, and tends to make the
resulting code both more human-readable, and faster to execute.

The above two techniques, optimization and normalization, allow MOSES to
out-perform standard genetic programming systems. The EDA algorithms, by
�nding the dependencies in a Bayesian network, in fact are able to �nd how dif-
ferent parts of a program are related. This quickly rules out pointless mutations
that change one part of a program without making corresponding changes in
other, related parts of the program. The other important ingredient, reduction
to normal form, allows programs to become smaller, more compact, faster to
execute, and more human readable. Besides avoiding spaghetti code, normal-
ization removes redundancies in programs, thus allowing smaller populations of
less complex programs, speeding convergence.

The programs that MOSES generates are "generic", in the sense that MOSES
works with structured trees, represented in Combo. Such trees can represent
propositional formula, procedural or functional programs, etc. The core MOSES
solver is written in C++, and takes the form of a library. There are many ex-
ample programs illustrating how to use this library.

4 Terminology

MOSES uses a vocabulary speci�c to itself. Some of the most important terms
are de�ned below.

Program. A program, in MOSES, is a combo program. A combo program is
represented as a tree of operators, variables and values. Nodes in the tree
may be constants (bits, integers, real numbers, etc.), boolean operators
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(and, or, etc.), arithmetical operators (+, -, *, etc.), functions (sin, cos,

etc.) or logical expressions (if...then...else, etc.), and so on. Arguments to
an n-ary function are denoted with hash marks, so that #1, #2, . . . ,#n
would be the arguments. Thus, for example, (0 < (0.5 ∗ #1)) ∨ #2 is a
program that takes argument #1 (a �oat pt. number), multiplies it by
0.5, and checks to see if it is greater than zero. The result of this compare
is or-ed (∨-ed) with argument #2 (a boolean). Although programs may
be explicit, as in this example, a program can also be understood to be a
representation, together with a particular set of knob settings, as explained
below.

Exemplar. An exemplar is a speci�c program; typically, the �ttest one found.

Representation. A representation is a parameterized tree structure, repre-
senting a particular region of program space, centered around a single
program (the exemplar). A representation is derived from the exemplar
by inserting additional nodes in various (random) locations. The inserted
nodes, however, are not speci�c values or functions or operators, but are
rather place-holders for values/functions to be determined later. Each
place-holder may be thought of as a parameter, and is colloquially re-
ferred to as a knob. A representation, together with a particular setting
of the knobs, is equivalent to a program. During the optimization step in
MOSES, the space of all possible parameter or knob settings will be ex-
plored, to locate the best possible settings, i.e. to �nd the �ttest program.

Knobs. A knob is a single dimension of variation relative to a representation
tree. It may be discrete or continuous. For example, given the program
tree fragment (0 < (0.5 ∗#1)) ∨#2, a continuous knob might be used to
vary the numerical constant 0.5 to other values. So, setting this knob to
0.7 would transform this tree fragment to (0 < (0.7 ∗#1))∨#2. Discrete
knobs have a 'multiplicity ': the number of di�erent possible settings they
may have. Continuous knobs have an e�ectively in�nite multiplicity; in
practice, however, they are varied in steps of fractional powers of two.

A discrete knob with a multiplicity of 4 might be used to transform the
boolean input #2, with 0 meaning 'always true', 1 meaning 'invert', 2
meaning 'don't invert' and 3 meaning 'always false'. So, setting this knob
to 1 would transform the above example tree to (0 < (0.5 ∗#1))∨ (¬#2).
A discrete knob of multiplicity 6 might be used to replace the less-than
comparison with ≤, >,≥, =or 6=(thus making six possible comparison op-
erators, for a multiplicity of 6 for this knob). Another discrete knob of
multiplicity 3 might replace the 'or ' symbol ∨ with the 'and ' symbol ∧ or
the 'exclusive-or ' symbol ⊗. Knobs do not have to be de�ned as running
over all possible values; it is usually convenient to keep multiplicity fairly
low. This will usually help avoid excess redundancy in program space,
although resulting programs may be more verbose.
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Representation-building. The step in the MOSES algorithm where an ex-
emplar is chosen, and a representation is constructed from it.

Instance. An instance is an array of particular knob settings. For compactness,
instances are maintained as strings of bits; the description of which bit-
�elds correspond to which knob settings are kept in separate structures,
the �eld set and the knob mapper. During optimization, an evolutionary
algorithm will pick and choose among many di�erent instances; a single
�eld set and knob mapping su�ces to describe them all.

Field set. The bits in the instance bit-string are organized into an array of
�elds. Each �eld corresponds to a single knob. The �eld set describes
each �eld in the array: whether it is discrete or continuous, how many
settings it may have, etc. The �eld set is divorced from the representation
or any combo program: it is merely a listing of possible knobs, but does
not indicate where those knobs are located in the representation.

Knob mapping. The knob mapping associates each �eld in a �eld set with the
corresponding knob in the representation.

Neighborhood. The nearest neighbors of an instance are those other instances
that di�er by exactly one knob setting. This is called the neighborhood

at distance one. With distance understood as the Hamming distance, one
can then consider progressively larger neighborhoods: those that di�er by
just two knob settings, or three, etc.

Deme. A deme is a population of programs derived from one single repre-
sentation. Thus, a deme can be thought of as a population of knob set-
tings. During the optimization phase, an optimizer algorithm, such as hill-
climbing, simulated annealing, or the Bayesian optimization algorithm is
used to work with the population, locating the best possible knob settings
for the given representation. In practice, in the actual implementation, a
deme is just a set of scored instances. This is because all instances in a
deme share the same representation, �eld set and knob mapping.

Metapopulation. MOSES maintains a collection of demes, playing each o�
the others. This set of demes is referred to as the metapopulation. Pairs
of demes are in competition; �tter demes are used to replace less �t demes.

Scoring function. During the optimization phase, candidate programs being
explored are scored by a scoring function. The function is speci�c to the
given problem; it returns a value indicating how closely the candidate pro-
gram matched the desired output. For supervised training (aka regression)
problems, the scoring function just returns how closely the candidate pro-
gram matched the training set. For demonstration problems, the scoring
function is typically some well-studied toy problem, such as parity, one-
max, santa-fe-trail, etc. Usually, the perfect score is 0, while worse scores
are negative. Fitter programs have higher scores.
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Domination. One program instance is considered to dominate another if it is
better in every way. The concept of domination requires a scoring func-
tion that issues not just one grand-total score, but an array of scores. For
example, for regression problems, a program instance may be judged on
how accurately it provides an output given an input. To test this, one
typically provides a table of N input rows, with each row indicating a de-
sired output. The program can then be tested on each row, with the result
compared to the desired output value for that row. One program is said to
dominate another only if it has a better score on each of the N tests. Typ-
ically, two di�erent programs do not dominate one-another: one is better
for some input rows, while the other is better at others. In MOSES, both
are kept around and further evolved, with the goal of eventually �nding
a program that dominates all. Programs that are completely dominated
are (usually) discarded.

Normalization, reduction. The normalization step of the MOSES algorithm
takes a program, and simpli�es it, using re-writing rules. The resulting
program is said to be in normal form. Thus, for example, #3 ∨ F can
be reduced to just #3 since or-ing with false changes nothing. Similarly,
0 < 0.5 ∗#6 can be normalized to 0 < #6 since multiplying by one-half
never changes the sign of a number. Likewise, the expression �if (x =
x) then y� can be reduced to y, since a value is always equal to itself, and
so the if-branch is always taken. Normalization can sometimes eliminate
large parts of a program, if they are vacuous or tautological. There are
many di�erent types of normalization that are possible; MOSES always
normalizes to the so-called 'elegant normal form'. The word 'reduction' is
often used as a synonym for normalization.

5 MOSES Algorithm

The MOSES algorithm consists of two nested optimization loops. The outer loop
maintains a population of scored program trees, the so-called 'metapopulation'.
The inner loop explores a local neighborhood of a given program tree, using a
representation centered on an exemplar. When the inner loop �nds a reasonable
set of candidate programs, these are returned to the outer loop, and merged back
into the metapopulation. More precisely, the steps are as follows:

1. Selection step. Choose one exemplar from the metapopulation. Initially,
this will be the empty program, unless the user speci�ed an initial exem-
plar. The choice is made by considering the entire metapopulation, and
picking the program tree with the highest score, that has not been previ-
ously explored (There is little point in re-exploring the neighborhood of a
previously explored program tree, as all improvements are likely to have al-
ready been found). This selection is done by metapopulation::select_exemplar().

2. Representation-building step. Given an exemplar, construct a represen-
tation; that is, take the exemplar and decorate it with knobs. Build a
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�eld set and a knob mapper that will act as a mapping between a linear
bit-string, and speci�c knob settings in the representation. The �eld set
describes the layout of the bit-string; the knob mapper associates �elds
with knobs. Create an initial instance; that is, a bit-string that can be
interpreted as a collection of knob settings, via the �eld set mapping.

3. Optimization step. Given a representation, a �eld set, and an initial in-
stance, invoke the inner optimization loop. One of several di�erent inner
optimization loops are possible; they all have the steps below in common.
Typically, a collection of scored instances is maintained; this collection is
called a 'deme', and thus the �rst step is to 'open a new deme'.

(a) Score the initial instance: that is, evaluate the combo program that
results from these speci�c knob settings, and see how well this pro-
gram re�ects the desired regression output.

(b) Generate new instances via some algorithm (e.g. hill-climbing, sim-
ulated annealing, etc.) and score these instances in turn. Maintain a
collection of scored instances; these are referred to as the deme. New
instances are typically neighbors of other instances: they di�er from
existing instances by just a few knob settings.

(c) Terminate the search via some exit criteria: lack of improvement,
number of allowed evaluations exceeded, maximal neighborhood ex-
plored, etc.

4. Close the deme. This step accept the list of best-possible instances found
in the previous step, and merges them back into the metapopulation.
First, convert each instance in the deme back into ordinary program trees
(i.e. by �xing knob settings at a set position, thus 'removing' the knobs).
Normalize, or reduce each of these to 'elegant normal form'. Merge the
resulting programs into the metapopulation, ranking them by score. Merg-
ing is performed by considering domination; dominated programs are dis-
carded; non-dominated ones are added to the metapopulation.

5. Go to step 1, repeating until termination criteria are met, such as achieving
perfect score, or exceeding the maximal number of evaluations, etc.

Note that representation-building, the optimization algorithm, and normaliza-
tion are vital steps of the algorithm, and they crucially in�uence its performance.
Representation building is speci�c for each domain (e.g., learning propositional
formulae), while the optimization algorithm is general (it operates only on in-
stances). MOSES currently supports representation building for several prob-
lem domains, including propositional formulae, actions1, arithmetic formulas,
and predicate logic (arithmetic relations embedded in propositional formulae.

1By �actions� we mean mini programming languages describing actions of a agents such
as arti�cial and [6]. Available actions typically cover atomic instructions like �step forward�,
�rotate left�, �rotate right�, �step forward�, branching instruction such as �if-then-else�, and
loop instruction such as �while�.
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MOSES also supports several di�erent optimization algorithms, including hill-
climbing, simulated annealing and Bayesian optimization. Work on support-
vector machine (SVM) optimization is underway. Only one form of program
reduction, to elegant normal form, is supported. Other types of reduction, e.g.
SAT-based or satis�ability-modulo-theory (SMT) may be possible but remains
unexplored.

6 Installation

To compile MOSES, you need

• a recent gcc (4.x or later);

• the boost libraries (http://www.boost.org/);

• the CMake package (http://www.cmake.org/HTML/Index.html);

For compiling MOSES, create a directory build (from the root folder of the
MOSES distribution), go under it and run �cmake ..�. This will create the
needed build �les. Then, make the project using �make� (again from the direc-
tory build). Generated executables will be in the folder build/moses/learning/moses/main.

7 Source Files and Folders

MOSES is implemented in C++ and makes heavy use of templates. Modifying
MOSES requires familiarity with C++ and, at least to some extent, with C++
templates.

The following folders can be found in the MOSES distribution, under moses/learning/moses:

eda This folder contains support for estimation of distribution algorithms, and
the lower level support for optimization algorithms.

example-ant Example implementation of using MOSES to solve for robotic
perception-action algorithms. This example demonstrates the "ant on the
Santa Fe Trail" problem; it includes de�nitions for the movement of the
ant, the perceptions of the ant, and the space in which the ant can move.
Conceptually, the problem is that of �nding the best possible algorithm for
a robot to use to accomplish some task, given that the robot has certain
limited senses, and certain limited movements.

example-data Contains example data sets, illustrating regression (supervised
training).

example-progs This folder contains examples demonstrating di�erent features
of the MOSES system: reducing expressions, and, of course, applications
of MOSES itself. It includes examples for the, for "parity formulae", etc.

main Contains the main moses executable.
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moses This folder contains the core support for MOSES � including base type
de�nitions, and distributed computation support.

optimization Contains the main optimization code.

representation Contains code for representation-building, that is, for taking
an exemplar, attaching knobs to it, and converting the knob settings to
and from bit-strings that the optimizer expects to work on.

8 Types, Structures, and Classes

This section brie�y reviews some of the key datatypes and classes found in the
code. MOSES makes heavy use of C++ templating. This is done so as to avoid
the need for de�ning base classes, and so avoid the need for pervasive use of
derived classes and virtual methods.

8.1 Structured expression trees

For representing structured expression trees (programs, propositional formulae,
etc.) MOSES relies on the library ComboReduct. In this library, structured
expressions are represented by trees of the type combo tree as follows:

typedef Util::tree <vertex > combo_tree;

The �le comboreduct/combo/vertex.h de�nes vertex as shown blow. It is
done this way so that it can capture di�erent sorts of nodes, for di�erent, but
still �xed, problem domains.

typedef boost::variant <builtin ,

wildcard ,

argument ,

contint ,

action ,

builtinaction ,

perception ,

definiteobject ,

indefiniteobject ,

message ,

procedurecall ,

anntype ,

actionsymbol > vertex;

For more information, review the docs provided in the distribution of the Com-
boReduct library.

8.2 Representation building

Conceptually, representation building proceeds by selecting a single program
tree or exemplar, and then building a neighborhood of nearby programs. The
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result is a deme: a population of similar programs, centered upon the exemplar.
After representation building, the optimization step is performed, to �nd the
�ttest programs in the deme.

Representation building proceeds in several steps: the exemplar is festooned
with a set of 'knobs': these are adjustable parameters added to the program
tree, to alter its operation. An exemplar festooned with knobs is called a
'representation'. Each of these steps is reviewed in greater detail, below.

The representation itself is speci�ed by the class representation, given in
representation/representation.h. The structure itself maintains a copy of
the exemplar, as well as the collection of knobs used to create the representation.
Knobs are added to the exemplar by the class constructor. The knob mapping
relates locations in the representation to �elds in the �eld set. The �eld set
indicates which bits in the bit-string instance correspond to a �eld.

The representation class does not maintain the set of possible knob set-
tings (the instances); these kept in the deme, and are held elsewhere.

8.3 Knobs

Knobs represent tunable parameters in a representation. In the MOSES imple-
mentation, every knob is de�ned with respect to a particular program tree; that
is, ever knob has a speci�c, explicit location in a speci�c, explicit combo_tree.
Knobs are de�ned in representation/knobs.h and inherit from the base class
knob_base:

struct knob_base {

protected:

combo_tree& _tr;

combo_tree :: iterator _loc; // location of knob in tree

};

Knobs may be continuous (contin_knob) or discrete. Discrete knobs have
a �xed number of settings, determined at compile time:

template <int Multiplicity >

struct discrete_knob : public knob_base {...};

although some of the discrete knob settings may be disallowed at runtime, ef-
fectively decreasing the total multiplicity.

In general, knobs may be �present� or �absent�. XXX The semantics of this
is unclear. What does this mean? Knobs also have �default� settings, but the
meaning of this setting is also unclear, as the code does wonky things with this...
XXX TODO �x this.

The logical_subtree_knob is suitable for propositional formulae; it has
three possible settings: present, absent, or negated. In simple_action_subtree_knob
knobs, a subexpression can be just present or absent. In action knobs, a node
can have di�erent settings, corresponding to atomic or compound actions, sam-
pled as �perms� in the method build_knobs::sample_action_perms. XXX
more explanation please ...
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Knobs are added to an exemplar using class build_knobs de�ned in representation/build_knobs.h.

8.4 Packed Knobs, Instances

In order for knob settings to be e�ciently managed by the optimization step,
they are packed into a bit-string; the bit-string is of type instance, declared in
eda/eda.h as a vector of ints:

typedef unsigned int packed_t;

typedef vector <packed_t > instance;

The class field_set describes the manner in which knobs are packed into
the bit string. De�ned in representation/field_set.h, it contains a list of
�elds with describe the width of a �eld, and it's o�set within the bit-string:

struct field {

width_t width;

size_t major_offset , minor_offset;

};

Fields come in four basic types: continuous, discrete, �terms�, and single-bit
booleans. Discrete �elds represent variables that can take on multiple distinct
values. These typically take several bits to represent; single-bit boolean vari-
ables are treated distinctly. Continuous variables can take on values in the real-
number line. However, they are not represented by �oats or doubles, but rather,
are represented with a certain binary tree of intervals of the real-number line.
This encoding is used in order to avoid various di�culties that optimization al-
gorithms encounter with �oats and doubles. The rationale and design is further
discussed here: http://code.google.com/p/moses/wiki/ModelingAtomSpaces. �Term�
�elds refer to the tree structure of term algebras: they can be thought of as trees
whose nodes are labeled with strings. Term algebras, also known as �absolutely
free algebras�, are commonly used in logic, category theory, universal algebra
and programming to represent arbitrary data structures. From the standpoint
of MOSES, they generalize the binary tree structure of the 'contin' variables.

The field_set provides a set of iterators for walking over these four types;
the iterators can be used to extract and change speci�c values in the bit-string,
in the usual fashion. That is, dereferencing an iterator gives the value. So for
example, the disc_iterator can be used to iterate over discrete �elds in an
instance:

const_disc_iterator begin_disc(const instance& inst) const;

const_disc_iterator end_disc(const instance& inst) const;

instance_t my_inst = ...;

const_disc_iterator it = begin_disc(my_inst );

for ( ; it <end_disc(my_inst ); it++) {

cout " This is the value: " << *it << endl;

}
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Typically, many di�erent instances can be described by the same field_set.
Thus, when an instance_set is de�ned (see below), one copy of the field_set
is kept, to describe all of the instances in an instance_set.

These unpacked �elds are associated with actual knobs in a speci�c combo_tree
by means of the knob_mapper. So, for example

typedef std::multimap <field_set ::disc_spec , disc_knob > disc_map;

is a map between disc_knob's (discrete knobs, which are aware of the combo_tree
in which they are located), and disc_spec's (knob speci�cations, which are used
by field_set to describe �elds in the packed bit-string). This map can be used
to �nd a knob value in a packed bit-string, or, conversely, given a �eld, to �nd
the corresponding knob in a combo_tree.

8.5 Representation, revisited

XXX some details below incorrect.
The constructor of this structure, builds knobs with respect to the given

exemplar (by the method build_knobs).
This structure stores the exemplar like a tree (more precisely combo_tree).

This structure has a method for using a given instance to transform the exemplar
(transform) providing a new expression tree.

The structure also has methods for clearing the current version of the exem-
plar (setting all knobs to default values � zeros) � clear_exemplar, for getting
the exemplar � get_clean_exemplar, and for getting the reduced, simpli�ed
version of the exemplar get_clean_exemplar.

8.6 Scoring

The �tness of program trees are ranked with scores. There are several types of
scores, these are all de�ned in moses/types.h. The most basic is

typedef float score_t;

Di�erent programs may be code at di�erent things, and so judging their �tness
in multiple ways requires a vector:

typedef std::vector <score_t > behavioral_score;

Programs are also scored according to their complexity, so in moses/complexity.h
we �nd:

typedef int complexity_t;

Composite scores pair up the complexity and the �tness score:

typedef std::pair <score_t , complexity_t > composite_score;

while behavioral composite scores combine the complexity measure with the
vector:
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typedef tagged_item <behavioral_score , composite_score >

composite_behavioral_score;

XXX Disconnect .. the optimize() template in eda/optimize.h doesn't take
any of these, but a generic scoring policy which can return anything (and main-
tain anything internally, by being a class that inherits from unary_function<instance,retval>
and implementing operator>(). So. ahh explain.... also, a number of example
scoring functions in example-progs/scoring_functions.h

8.7 Demes and Optimization

At the conceptual level, the optimization algorithms operate on a population in a
deme, by twiddling knobs until the optimizer �nds a program that performs well.
That is, a deme is a collection of knob settings: for evolutionary optimization
algorithms, it may be thought of as a population: di�erent instances of knob
settings compete with one-another until a population of the best-possible knob
settings is found.

At the practical level, optimization operates on a population of bit-strings,
and not on abstract 'knob settings'. Thus, a necessary step of the MOSES algo-
rithm is to convert such abstract knob settings into packed bit strings, and vice

versa. This is done during the representation step of the algorithm: knobs were
inserted into an exemplar, the knobs were mapped to knob speci�cations, and
the knob speci�cations were in-turn mapped to bit-strings. The optimization
algorithm then tries to �nd the �ttest bit-strings or 'instances'.

So, in eda/scoring.h, we �nd scored instances. The higher the score, the
�tter the bit-string:

template <typename ScoreT >

struct scored_instance :

public tagged_item <instance , ScoreT > {...};

In representation/instance_set.h we �nd a collection of scored instances:

template <typename ScoreT >

struct instance_set :

public vector <scored_instance <ScoreT > > {

...

protected:

const field_set &_fields;

};

Note that, in the above, there is a field_set member used to describe how the
packed bits in the instance are to be unpacked.

8.8 The Optimize Template

These �le eda/optimize.h de�nes a function template that implements a generic
evolutionary selection algorithm. Currently, this template is used to implement
only one optimization algorithm, the Bayesian univariate algorithm. Although
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MOSES also implements hill-climbing and simulated annealing, neither of the
latter two make use of this template (although they probably should, as oth-
erwise there is a large amount of cut-n-paste code duplication, leading to code
bloat and making maintenance harder ...)

template <typename ScoreT ,

typename ScoringPolicy ,

typename TerminationPolicy ,

typename SelectionPolicy ,

typename StructureLearningPolicy ,

typename ProbsLearningPolicy ,

typename ReplacementPolicy ,

typename LoggingPolicy >

int optimize(instance_set <ScoreT >&, ...);

The algorithm itself is meant to be generic: it is a loop of steps performed on
a population. The di�erent policies determine how the di�erent steps of the
algorithm are actually carried out.

Before entering the loop, each individual in the population is scored for
�tness (using XXX??). Inside the loop, the following steps are taken:

1. A number of individuals are selected, using SelectionPolicy. The se-
lected individuals will be modeled and then entered into the tournament.
(XXX what pre-de�ned selection policies to we have??)

2. Initialize a model, using the speci�ed StructureLearningPolicy. Cur-
rently, only one policy is pre-de�ned: univariate(), which creates the
trivial structure, viz. no structure at all. The univariate policy assumes
no interdependency at all between di�erent genes (variables) in the popu-
lation: its a no-op. The BOA policy, (XXX which needs to be ported over
from older code XXX), will build a full Bayesian network of dependencies.

3. Learn the structure. The idea here is that the di�erent variables in
the problem are not independent, but are related to one-another: this
is the �structure� of the problem. This step gives the solver the op-
portunity to discern that structure. So, for example, the Bayesian Op-
timization Algorithm (BOA) assumes that the structure is a network
of probabilities, a Bayesian network. As this algorithm is generic, any
structure learning system may be used; that is, this step invokes the
StructureLearningPolicy. Only the selected individuals, from step 1,
are used for this.

4. Learn the probability distribution for the selected individuals. The learn-
ing here is done within the context of the previously learned structure.
Again, the presumption is that, once the dependencies between vari-
ables are known, then understanding the actual distribution in a pop-
ulation will hint at were optimal solutions lie. This function is of type
ProbsLearningPolicy.
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5. Create a �xed number of new individuals or instances. These are created
based on the distribution learned in the previous step. The goal here is to
create more individuals that are likely to have a high score.

6. Score the new individuals, using the ScoringPolicy. This step determines
the �tness of the newly created individuals. The scoring policy is, by
de�nition, highly problem-speci�c. A number of di�erent example scoring
policies can be found in example-progs/scoring_functions.h.

7. Replace segments of the existing population with the newly created indi-
viduals. This is done with the ReplacementPolicy. Several di�erent re-
placement policies are de�ned in eda/replacement.h: the replace_the_worst()
policy unconditionally replaces the lowest-scoring members of the popula-
tion. The rtr_replacement() replaces the most similar members, based
on the hamming distance between the �elds.

8. Repeat. Go to step 1, unless the maximum generation count has been ex-
ceeded, or if the TerminationPolicy has been met. There is no point in it-
erating if a good-enough solution has already been found; the TerminationPolicy
determines what is considered to be �good enough�. Currently, two types of
termination are pre-de�ned, in eda/termination.h: one is terminate_if_gte(),
which ends when scores exceed a bound, and terminate_if_gte_or_no_improv(),
which ends when scores exceed a bound, or fail to show improvement.

Note that ScoringPolicy needs to be thread-safe, as it's operator() will be
invoked from multiple threads.

8.9 Metapopulation

The metapopulation is a set of scored combo trees. More precisely, they are
scored with composite behavioural scores (or b-scores). A 'bscored combo tree'
is then just a pair that associates a b-score with a tree, de�ned in the �le
moses/types.h.

typedef tagged_item <combo ::combo_tree ,

composite_behavioral_score > bscored_combo_tree;

The metapopulation is then a set of scored combo trees, de�ned in moses/metapopulation.h.
More precisely, it is a template, inheriting from the set:

typedef std::set <bscored_combo_tree > bscored_combo_tree_set;

template <typename Scoring ,

typename BScoring ,

typename Optimization >

struct metapopulation :

public bscored_combo_tree_set {...};
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The template plays only a small role in this class; it's only purpose is to allow
generic scoring and optimization algorithms to be used with the metapopulation.

The metapopulation will store expressions (as scored trees) that were en-
countered during the learning process (not all of them; the weak ones, which
are dominated by existing ones, are usually skipped as non-promising).

As an example, one can iterate through the metapopulation and print all its
elements with their scores and complexities in the following way:

for (const iterator it=begin (); it!=end(); ++it)

cout << gettree (*it) << " "

<< getscore (*it) << " "

<< getcomplexity (*it) << endl;

The metapopulation is updated in iterations. In each iteration, one of its
elements is selected as an exemplar. The exemplar is then used for building a
new deme (that will further extend the metapopulation).

8.10 Metaoptimization

The main metaoptimization step is carried out by the metapopulation::expand()
method. This method implements three steps: create_deme(), followed by
optimize_deme(), followed by close_deme(). The optimize_deme() step in-
vokes the low-level optimizer for the deme (i.e. invokes either univariate_optimization(),
simulated_annealing() or iterative_hillclimbing().

XXX discuss domination.

8.11 TODO:

Discuss role of tree_type in knobs.

9 MOSES: Putting It All Together

With all components brie�y described above, this section discusses how are they
combined in the MOSES system. XXX The contents below are stale, and need
to be re-written.

The main moses method is trivial: it expands the metapopulation in itera-
tions until the given number of evaluations or a perfect solution is reached. This
method is implemented in moses/moses.h, in several variations (some with ad-
ditional arguments corresponding to available actions and perceptions, just for
the action problem domain).

Typical usage of MOSES starts by providing scoring functions. For instance,
for learning disjunction propositional formula one can use the following decla-
ration (de�ned in moses/scoring_functions.h):

disjunction scorer;
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and for solving the ant problem, one can use the following declaration (de�ned
in moses/scoring_functions.h):

antscore scorer;

Also, the type of expression to be learnt has to be provided 2. For instance,
for the disjunctive formula, one should use:

typetree tt(id::lambdatype); tt.appendchildren(tt.begin(),id::booleantype,arity+1);

where arity carries the information of the number of propositional variables to
be considered. For the ant problem, one would write:

typetree tt(id::lambdatype); tt.appendchildren(tt.begin(),id::actionresulttype,1);

Then the metapopulation has to be declared. It is instantiated via templates,
saying which scoring function, which behavioral scoring function, and which
optimization algorithm to use. As, arguments one has to provide the random
generator, the initial exemplar, the type tree, simpli�cation procedure, then the
scorers and the optimization algorithm. This is an example for learning the
disjunctive formula:

metapopulation<logicalscore,logicalbscore,univariateoptimization>

metapop(rng, vtree(id::logicaland),tt,logicalreduction(), logicalscore(scorer,arity,rng),

logicalbscore(scorer,arity,rng), univariateoptimization(rng));

and this is an example for the ant problem:

metapopulation<antscore,antbscore,univariateoptimization>

metapop(rng,vtree(id::sequentialand),tt,actionreduction(), scorer,

bscorer, univariateoptimization(rng));

10 Final Remarks

While MOSES is not that big a system, it cannot be documented in detail in
just a few pages. However, the descriptions given above should be helpful when
one �rst encounters MOSES and tries to use it and modify it.

Currently, MOSES together with ComboReduct consists of 17 KLOC of .cc
�les and 24 KLOC of header �les, as counted by the wc command. This includes
all comments, copyright notices, example programs and utilities. Of this, combo
consists of about 18 KLOC while MOSES consists of 22 KLOC.

2for a detail explanation of the type system used in ComboReduct see the doc provided
with the distribution of ComboReduct
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