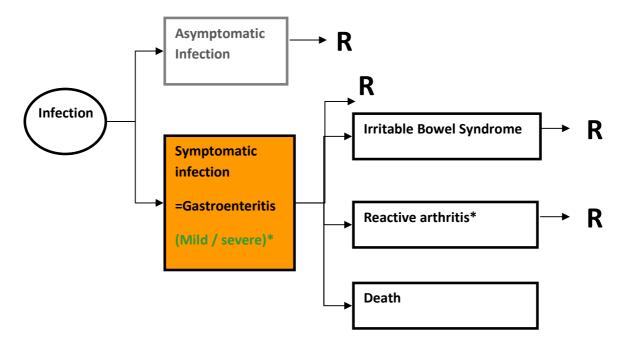
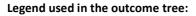
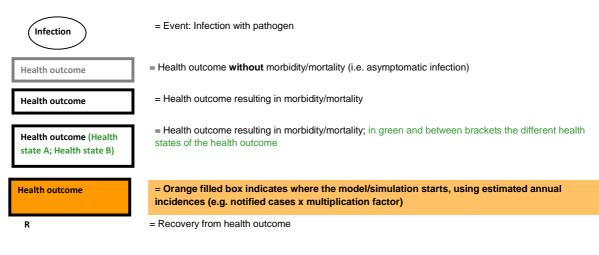
1	Supporting Information file 2. – Disease burden of <i>Salmonella</i> spp. and <i>Campylobacter</i>
2	spp. in the Netherlands using the pathogen- and incidence-based DALY approach
3	
4	I. Model input summary
5	
6	In the following tables and figures we have summarized the model input parameters for
7	estimating the disease burden due to Salmonella spp. and associated sequelae, and due to
8	Campylobacter spp. and associated sequelae in the Netherlands (average 2005-2007).
9	Full details are available on request from the first author.
10	
11	Table S2.1 - Reported laboratory-confirmed cases for Campylobacter spp. and


Salmonella spp. in the Netherlands (average of the years 2005-2007)

Patho	ogen	Reported laboratory-cont	firmed cases
		Male	Female
Salmo	onella spp.	698.7 ^{a,b}	728.7 ^{a,b}
Camp	<i>sylobacter</i> spp.	1,855.7 ^{a.b}	1,670.7 ^{a,b}
Sourc	ce:	Laboratory surveillance [1] (personal comm	nunication by Wilfrid van Pelt;
		National Institute of Public Health and the	he Environment; June 2011)
a) The laboratory	surveillance network is composed of public laboration	atories that do cover in the case of
	Salmonella spp	about 64% of the Dutch population, and for Can	upylobacter spp. coverage is 52%.
	Correction is in	cluded in the multiplication factors.	
b) Cases are strati	fied by age, into the age-classes: 0; 1-4; 5-9; 10-14	4; 15-19; 20-24; 25-29; 30-34;
	35-39; 40-44; 4	5-49; 50-54; 55-59; 60-64; 65-69; 70-74; 75-80; 8	$30-84 \text{ and } \ge 85 \text{ years.}$

Patho	gen	Multiplication factors (MF) ^{a, b}	Source
		Most likely (range)	
Salmo	onella spp.	19.8 (4.4 - 64.8)	[2]
Camp	ylobacter spp.	18.85 (7.4 – 47.4)	[2]
a)	MFs correct for underestin	nation (under-ascertainment and under-estimati	on). Additionally, the
	current MFs also take into	account that the coverage of the lab-confirmed	cases is less than 100%
	(see Table S2.1).		
b)	MFs should by definition b	e pathogen-, country-, age- and eventually also	o gender-specific (see
	Supporting Information fil	e 1). But published MFs in the literature fitting	Dutch laboratory-
	confirmed Campylobacter	and Salmonella infections were only pathogen-	- and country-specific
	(for details see Gibbons et	al. [3]). In the current illustration, we therefore	applied for each
	pathogen separately the same	me MF to all age- and sex-classes.	

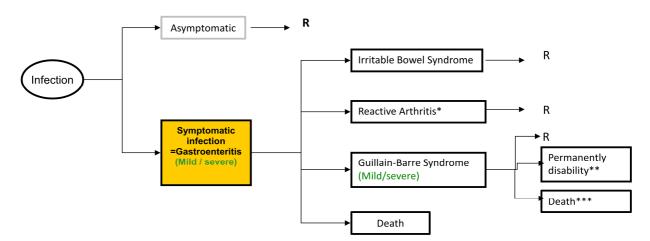

Table S2.2 - Pathogen-specific multiplication factors for the Netherlands


29 Figure S2.1 Outcome tree for Salmonella spp.

30

- 31 *Given the systematic uncertainty, we assumed that only "severe" Salmonella gastroenteritis (GE) cases
- 32 are at risk to develop Reactive arthritis (ReA). This assumption was modified in a scenario analysis where
- 33 we assumed that all Salmonella GE cases are at risk to develop ReA.

34


36	Table S2.3 Percentages u	sed in the <i>Salmonella</i> s	spp. outcome tree ^a

Health outcome	Distribution of health states	Risk to develop that	Sources/ Assumption
	in health outcome	health outcome	
	Most likely (range)	Most likely (range)	
Gastroenteritis (GE)	6.24% (5.35% -7.61%)	-	Laboratory-confirmed cases are a proxy for severe
	are severe GE cases		cases. Calculated from simulated incident cases and
			laboratory-confirmed salmonellosis cases in the
			Netherlands.
Death		0.1% (0.05%-0.3%) ^b	[4-6]
Irritable Bowel Syndrome (IBS)		8.8% (7.2% - 10.4%)	[7]
Reactive arthritis (ReA)		8% (2.3% - 15.0%) ^c	[5, 8]

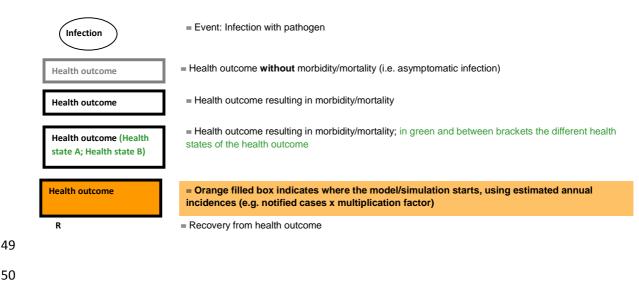
- b) See Figure S2.3 for the distribution over age-classes
- c) Only severe GE cases are at risk to develop ReA.

40

41 Figure S2.2 Outcome tree for *Campylobacter* spp.

42

43 * Only severe gastroenteritis (GE) cases are at risk to develop reactive arthritis (ReA). This assumption was


44 modified in a scenario analysis where we assumed that all Campylobacter GE cases are at risk to develop

45 ReA. ** Non-fatal severe Guillain-Barré Syndrome (GBS) cases may develop permanent disability; ***

46 The majority of fatal GBS cases are severe GBS cases, for reasons of simplicity we therefore assumed that

- 47 only severe GBS cases may be fatal.
- 48

Legend used in the outcome tree:

Health outcome	Distribution of health states	Risk to develop that	Sources/ Assumption
	in health outcome	health outcome	
	Most likely (range)	Most likely (range)	
Gastroenteritis (GE)	9.6% (4.0% - 22.6%)	-	Laboratory-confirmed cases are a proxy for severe
	are severe GE cases		cases. Calculated from simulated number of
			incident cases [9] and laboratory-confirmed
			campylobacterosis cases in the Netherlands.
Death		0.03% (0.001%-	[4, 9]
		$0.05\%)^{b}$	
Irritable Bowel Syndrome (IBS)		8.8% (7.2% - 10.4%)	[7]
Reactive arthritis (ReA)		7.9% (2.4% - 8.0%) ^c	[10-12]
Guillain-Barré Syndrome (GBS)	17% are mild GBS cases ^d ;	0.02% - $0.09\%^{d}$	[13-16]
	83% are severe GBS cases ^d		
GBS fatal		4.1% (2.4%-6.0%) ^{d,e}	[15-18]
GBS permanent disability		100% of non-fatal	[15, 16]
		severe GBS cases	

Table S2.4 Percentages used in the *Campylobacter* spp. outcome tree^a 51

52 a) ıgu npyl spp

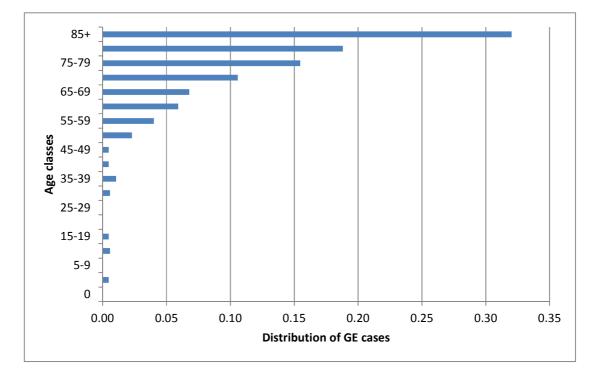
53 b) See Figure S2.3 for the distribution over age-classes

54 c) Only severe GE cases are at risk to develop ReA.

55 d) See Figure S2.4 for the distribution over age-classes

e) In about 3.4 % (2% -5%) of all GBS cases is the disease fatal [15, 18]. The majority of fatal GBS cases are hereby severe GBS cases. For simplification 56

57 reasons we therefore assumed that death due to GBS occurs only in severe cases, resulting in 4.1% (2.4% - 6.0%).


Health outcome (health		isability weight (w)	Durati	on
state)	W	Source	in years	Source
GE (health outcome)	0.105	[19]	0.017	[5]
IBS	0.042	[20]	5	[7]
ReA	0.059	Calculated based on	1^a	[20]
		Haagsma et al. [20] and		
		Hannu et al. [10]		
GBS (mild cases);	0.090	[21]	1 ^a	[21]
clinical phase				
GBS (severe cases);	0.280	[21]	1 ^a	[21]
clinical phase				
GBS (severe cases)	0.160	[21]	Remaining Life	[21]
permanent disability			Expectancy	

58 Table S2.5 Disability weights and duration

60

59

a) Duration based on an annual profile disability weight

61 Figure S2.3 Assumed age-distribution of fatal GE cases (in percentage)

62

63 Source: Based on all reported fatal Salmonellosis cases in Estonia, Germany and the Netherlands for the

64 years 2005-2007

66 Figure S2.4 Assumed age-distribution of GBS cases (in percentage), as derived from

[15,16].

Note: Fatal GBS cases are mostly severe GBS cases. For simplification reason we therefore assumed thatonly severe GBS cases are fatal.

74 II. Results

76	In the following tables and figures we have summarized some of the estimated results for
77	Salmonella spp. and associated sequelae, and for Campylobacter spp and associated
78	sequelae in the Netherlands (average 2005-2007). The results show undiscounted DALYs
79	with uniform age-weights.
80	

81 Table S2.6: The disease burden of *Salmonella* spp and associated sequelae in the Netherlands – Summary results, average and 95%

82 CI in brackets and italic.

Health outcome(s)	Cases	YLD	YLL	DALY	DALY	DALY
		per year	per year	per year	per case	per 100,000
					Symptomatic	
ACUTE ILLNESS						
GE (sum)		66	462	529	0.015	3.2
		(55-78)	(261-728)	(325-798)	(0.010-0.022)	(1.99-4.89)
Cases	35,300	66		66		
	(29,250-41,680)	(55-78)		(55-78)		
Death	44		462	462		
	(25-70)		(261-728)	(261-728)		
SEQUELAE						
IBS (sum)		652	0	652	0.018	4.0
		(529-790)		(529-790)	(0.017-0.020)	(3.2-4.8)
Cases	3,110	652		652		
	(2,520-3,760)	(529-790)		(529-790)		
ReA (sum)		11		11	0.0003	0.07
		(6-16)	0	(6-16)	(0.0002-0.0004)	(0.04-0.09)
Cases	183	11		11		
	(107-273)	(6-16)		(6-16)		
Sequelae (sum)		663	0	663	0.019	4.1
		(538-803)		(538-803)	(0.017-0.021)	(3.3-4.9)
ALL health outcomes		730	462	1,192	0.034	7.3
		(594-879)	(261-728)	(913-1,530)	(0.028-0.041)	(5.6-9.4)

Note: Total infected cases are not reported as asymptomatic salmonella cases were not explicitly modelled. Reason for not considering asymptomatic infections was that
 they do not contribute to the disease burden.

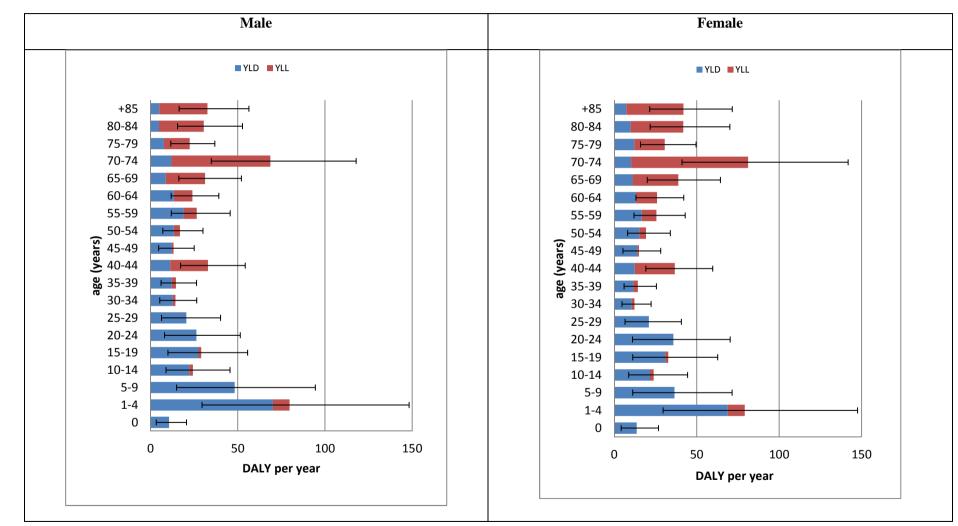


Figure S2.5 The average disease burden (DALY) of Salmonella spp. and associated sequelae in the Netherlands per age-group and

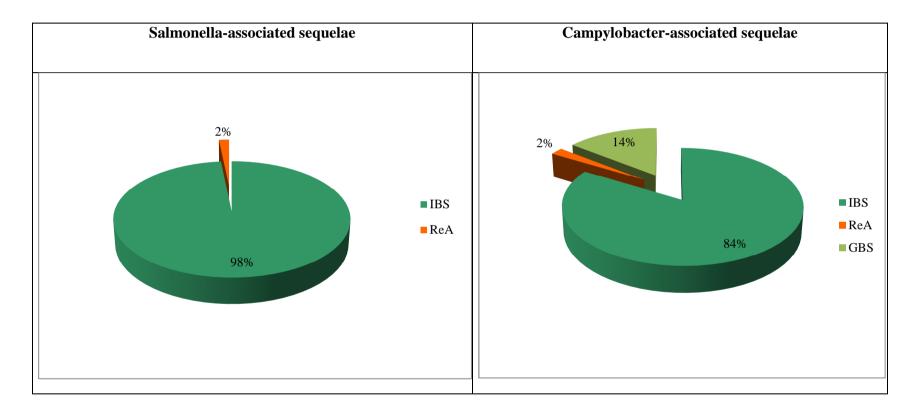
87 gender. The 95% uncertainty range is shown using error bars.

88

89 Table S2.7: The disease burden of *Campylobacter* spp. and associated sequelae in the Netherlands – Summary results, average and 95%

CI in brackets and italic

Health outcome(s)	Cases	YLD	YLL	DALY	DALY	DALY
		per year	per year	per year	per case	per 100,000
					Symptomatic	
ACUTE ILLNESS						
GE (sum)		144	227	371	0.005	2.3
		(127-160)	(122-328)	(262-479)	(0.003-0.006)	(1.6-2.9)
Cases	76,500	144		144		
	(67,800-85,550)	(127-160)		(127-160)		
Death	22		227	227		
	(12-31)		(122-328)	(122-328)		
SEQUELAE						
IBS (sum)		1,414	0	1,414	0.018	8,7
		(1,214-1,635)		(1,214-1,635)	(0.017-0.020)	(7.4-10.0)
Cases	6,700	1,414		1,414		


	(5,800-7,800)	(1,214-1,635)		(1,214-1,635)		
ReA (sum)		34	0	34	0.0004	0.2
		(20-52)		(20-52)	(0.0003-0.0007)	(0.1-0.3)
Cases	581	34		34		
	(335-889)	(20-52)		(20-52)		
GBS (sum)		191	50	242	0.003	1.5
		(76-314)	(18-91)	(94-398)	(0.001-0.005)	(0.6-2.4)
Cases	42	191		191		
	(18-67)	(76-314)		(76-314)		
Death	1.4		50	50		
	(0.5-2.6)		(18-91)	(18-91)		
Sequelae (sum)		1,640	50	1,690	0.022	10.3
		(1,379-1,920)	(18-91)	(1,406-1,994)	(0.019-0.025)	(8.6-12.2)
		1,783	277	2,061	0.027	12.6
ALL Health Outcomes		(1,512-2,075)	(165-387)	(1,737-2,406)	(0.024-0.030)	(10.6-14.7)

91 Note: Total infected cases are not reported as asymptomatic campylobactera cases were not explicitly modelled. Reason for not considering asymptomatic infections was that

92 they do not contribute to the disease burden.

- 93 Figure S2.6 The average disease burden (DALY) of *Campylobacter* spp. in the Netherlands per age-group and gender. The
 - Male Female VLD VLL VLD VLL +85 +85 75-79 75-79 65-69 65-69 55-59 55-59 (Xears) age 35-39 (kears) age (A5-49 35-39 25-29 25-29 15-19 15-19 5-9 5-9 0 0 50 100 150 200 0 50 100 150 200 0 DALY per year DALY per year
- 94 **95%** uncertainty range is shown using error bars.

- 95 Figure S2.7 The distribution of undiscounted average burden of Salmonella-associated sequeleae and Campylobacter-
- 96 associated sequeale, respectively, over the associated sequelae.

97 <u>References</u>

98

99	[1]	van Pelt W, de Wit MA, Wannet WJ, Ligtvoet EJ, Widdowson MA, van
100		Duynhoven YT. Laboratory surveillance of bacterial gastroenteric pathogens in
101		The Netherlands, 1991-2001. Epidemiol Infect 2003; 130(3):431-41.
102	[2]	Havelaar AH, Ivarsson S, Löfdahl M, Nauta MJ. Estimating the true incidence of
103		campylobacteriosis and salmonellosis in the EU. Epidemiol Infect 2013; 141 (2):
104		293-302.
105	[3]	Gibbons CL, Mangen MJJ, Plass D, Havelaar AH, Brooke RJ, Cassini A,
106		Peterson K, Stuurman A, Fèvre E, Kretzschmar MEE. Estimating the extent of
107		under-reporting and under-ascertainment of infectious diseases. (In preparation).
108	[4]	Adak GK, Long SM, O'Brien SJ. Trends in indigenous foodborne disease and
109		deaths, England and Wales: 1992 to 2000. Gut 2002; 51(6):832-41.
110	[5]	Kemmeren JM, Mangen M-JJ, van Duynhoven YTHP, Havelaar AH. Priority
111		setting of foodborne pathogens: disease burden and costs of selected enteric
112		pathogens. Bilthoven: National Institute of Public Health and Environment; 2006.
113	[6]	Much P, Pichler J, Allerberg F. Food borne infectious outbreaks, Austria 2005.
114		Wien Klin Wochenschr 2007; 119(5-6):150-7.
115	[7]	Haagsma JA, Siersema PD, De Wit NJ, Havelaar AH. Disease burden of post-
116		infectious irritable bowel syndrome in the Netherlands. Epidemiol Infect 2010;
117		138(11):1650-6.

118	[8]	Raybourne RB, Williams KM, Roberts T, and Arthritis Working Group. Food
119		Poisoning: Economic Implications. In: Caballero B, Trugo L, Finglas P (eds).
120		Encylopedia of Food Sciences and Nutrition. London; 2003.
121	[9]	Mangen MJJ, Havelaar AH, Bernsen RAJAM, Van Koningsveld R, de Wit GA.
122		The costs of human Campylobacter infections and sequelae in the Netherlands: a
123		DALY and cost-of-illness approach. Food economics - Acta Agriculturae
124		Scandinavica, Section C 2005; 2(1):35-51.
125	[10]	Hannu T, Mattila L, Rautelin H, Pelkonen P, Lahdenne P, Siitonen A, et al.
126		Campylobacter-triggered reactive arthritis: a population-based study.
127		Rheumatology 2002; 41(3):312-8.
128	[11]	Kosunen TU, Kauranen O, Martio J, Pitkanen T, Ponka A, Hortling L, et al.
129		Reactive arthritis after campylobacter jejuni enteritis in patients with HLA-B27.
130		Lancet 1980; 1(8181):1312-3.
131	[12]	Johnsen K, Ostensen M, Melbeye AC, Melby K. HLA-B27-negative arthritis
132		related to Campylobacter jejuni enteritis in three children and two adults. Acta
133		Med Scand 1983; 214(2):165-8.
134	[13]	Allos BM. Association between Campylobacter infection and Guillain-Barré
135		syndrome. J Infect Dis 1997; 176(Suppl2):S125-S8.
136	[14]	Ternhag A, Törner A, Svensson A, Ekdahl K, Giesecke J. Short- and long-term
137		effects of bacterial gastrointestinal infections. Emerg Infect Dis 2008; 14(1):143-
138		8.

- [15] Havelaar AH, de Wit MAS, van Koningsveld R, van Kempen E. Health burden in
 the Netherlands due to infection with thermophilic Campylobacter spp. Epidemiol
 Infect 2000; 125(3):505-22.
- 142 [16] Havelaar AH, de Wit MAS, van Koningsveld R. Health burden in the Netherlands
 143 (1990-1995) due to infection with thermophilic Campylobacter species.
- 144 Bilthoven: National Institute for Public Health and the Environment; 2000.
- 145 [17] Van Koningsveld R, Van Doorn PA, Schmitz PI, Ang CW, Van der Meche FG.
- Mild forms of Guillain-Barre syndrome in an epidemiologic survey in The
 Netherlands. Neurology 2000; 54(3):620-5.
- [18] Van Koningsveld R, Van Doorn PA, Schmitz PI, Van der Meche FG. Changes in
 referral pattern and its effect on outcome in patients with Guillain-Barre
 syndrome. Neurology 2001; 56(4):564-6.
- 151 [19] WHO. Global Burden of Disease 2004 Update: Disability weights for diseases152 and conditions. Geneva: WHO; 2004.
- 153 [20] Haagsma JA, Havelaar AH, Janssen BM, Bonsel GJ. Disability Adjusted Life
- Years and minimal disease: application of a preference-based relevance criterionto rank enteric pathogens. Popul Health Metr 2008; 6:7.
- 156 [21] Havelaar AH, Haagsma J, Mangen MJJ, Kemmeren JM, Verhoef L, Vijgen SMC,
- 157 et al. Disease burden of foodborne pathogens in the Netherlands, 2009. Int. J Food
- 158 Microbiol. 2012; 156(3):231-8.