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S1 Hyperparameter Optimization
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The first and second derivatives of Equation (11) with respect to hyperparameters
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Since ag, 8o, ko > 0, it is recommended to perform optimization based on the loga-
rithmic scale of the hyperparameters. Let
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y = In By, (23)
w = In Ko. (24)



It follows that
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S2 Synthetic Dataset

Synthetic Datasetl: Mixture of Gaussian Distributions and Indepen-
dent Data Variables

1000 observations of 10-dimensional random vector, x, are generated from a mixture
distribution:
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mean vectors are given by
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and covariance matrices X; are chosen to be diagonal matrices with positive diagonal
entries. The data are normalized before the use.

Synthetic Dataset2: Mixture of Gaussian Distributions and Correlated
Data Variables

Again, 1000 observations of 10-dimensional random vector are generated from the mix-
ture distribution (36) with settings (38), (39), but covariance 3; are chosen to be sym-
metric semi-positive definite matrices with positive diagonal entries. The data are nor-
malized before the use.

Synthetic Dataset3 : Mixture of Several Distributions

1000 observations of 10-dimensional random vector, x = (z1, ..., Z19), are generated from
a mixture distribution:
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in which 7; are given by Equation (38), P is a multivariate Gaussian distribution where
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P, is a multivariate student’s t-distribution whose variates are independent, and given
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where (-)" denotes a transpose operator, | - | denotes a determinant operator, p is a

10-dimensional zero vector, and 3 is a symmetric semi-positive definite matrix of size 10
by 10 whose diagonal entries are positive. Data generated from different distributions
are then shifted and centered at different locations given by rows of (39). The data are
normalized before using.

S3 Annotation Database

Table S1: Dataset and microarray annotation database.

Dataset Name

Microarray!

Annotation Database?

Blood1
Blood2
Bone Marrow
Brainl
Brain2
Colon
Lung
Multi-tissuel
Multi-tissue2
Prostatel
Prostate2

Affymetrix Human Genome U95 Version 2 Array
Affymetrix Human Full Length HuGeneFL Array
Affymetrix Human Full Length HuGeneFL Array
Affymetrix Human Genome U95 Version 2 Array
Affymetrix Human Full Length HuGeneFL Array
Affymetrix Human Genome U133A Array
Agilent SurePrint G3 Human GE 8x60K Microarray
Affymetrix Human Full Length HuGeneFL Array
Affymetrix Human Genome U95A Array
Affymetrix Human Genome U95 Version 2 Array
Affymetrix Human Genome U133A 2.0 Array

hgu95av2.db
hu6800.db
hu6800.db
hgu95av2.db
hu6800.db
hgul33a.db
hgug4112a.db
hu6800.db
hgu95a.db
hgu95av2.db
hgul33a2.db

I Type of the microarray used in the experiment.

2 Annotation database corresponds to the microarray. The database is used to access Gene
Ontology terms that are associated with each hybridization probe on the microarray. It is
available as an R Bioconductor package (http://www.bioconductor.org/).

S4 Technical Setting

e For APC and APE, we set damping factor to 0.9, and set preference for each data
point to be the median value of pairwise similarities between data points.



In all BHC algorithms, the concentration parameter « is set as 0.001.

For GBHC-TREE, the hyperparameter optimization is performed as follows. m
starting points on the search space {(ao,0,k0) € [1073,150] x [1073,130] x
[107°,5]} are generated (synthetic data clustering: m = 50; sample clustering of
gene expression data: m = 100; gene clustering of gene expression data: m = 200).
Optimization are run for each starting point to find local maxima, and the high-
est local maximum is selected. This optimization is performed using MATLAB
function MultiStart and fmincon, where the stopping criterion is that the distance
between the current and the previous searches is less than 1.

In GBHC-NODE, the optimization at each merger is performed using nonlin-
ear conjugate gradient method [1] based on logarithm scale of hyperparameters
A0, Bo, k0. This is explained by Equations (22)-(29) in Section S1. We use the
following parameters: ay = 4,by = 0.1,ag = 1.5,b, = 0.1,a;, = 2,b, = 1 in
Equations (22)-(29).

KC and KE are randomly initialized. To find the best run, we therefore run the
algorithms for 5 times and choose the partition that gives the lowest value of total
sums of point-to-centroid distance.

To infer the number of clusters in KC and KE by L-method, we run the algorithms
with predefined number of clusters k = 1,...,n (synthetic data clustering: n = 50;
sample clustering of gene expression data: n =number of samples; gene clustering
of gene expression data: n = 100).

Regarding the experimental platform, the sample clustering experiment is con-
ducted on Mac Book Pro laptop with 2.66 GHz Intel Core i7 processor, and only
one core is used. For gene clustering, the experiment is conducted on a machine
with 3.10 GHz Intel Core i5 processor, where 4 cores is running. GBHC-TREE,
GBHC-NODE, MBHC, KC, KE whose code run in parallel thus benefit from the
latter setting.



S5 Synthetic Data Clustering Experiment

Table S2: Number of clusters inferred by GBHC for synthetic data clustering
experiment.

Dataset | APC | APE | GBHC-| GBHC-| MBHC | AC | AE | CC | CE | KC | KE
TREE | NODE
Synthetic | 31 46 7 7 13 18 7 14 6 3 5
Dataset1
Synthetic | 60 85 14 37 28 15 3 41 3 3 4
Dataset2
Synthetic | 38 n/a | 22 12 12 3 5 14 4 3 5
Dataset3

n/a: not applicable since the algorithm does not converge.

Effect of Degree of Correlation between Data Variables on the Perfor-
mance of GBHC

To investigate the effect of degree of correlation between a pair of data variables on
the behavior of GBHC-TREE and GBHC-NODE, we generate 6 datasets. Each dataset
contains a single cluster of 100 independently and identically bivariate Gaussian dis-
tributed random vectors, and the correlation coefficients between data variables of dif-
ferent datasets are 0.4,0.5,...,0.9. Each dataset are then normalized and clustered by
GBHC-TREE and GBHC-NODE. Table S3 shows the inferred number of clusters in
each dataset. We can see that the number of clusters inferred by both algorithms tends
to increase as the degree of correlation increases.

Table S3: Number of clusters inferred by
GBHC, subject to the degree of correlation.
The actual number of cluster is 1.

Algorithm 0410506 |07]08]09
GBHC-TREE | 1 1 1 2 1 2
GBHC-NODE | 1 1 1 2 3 2

Effect of the Number of Strongly Correlated Pairs of Variables on the
Performance of GBHC

We study the effect of the number of highly correlated pairs of variables on the perfor-
mance of GBHC by consider three synthetic datasets. Each dataset contains a single
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cluster of 100 observations of 4-dimensional random vector, drawn from multivariate
Gaussian distribution. The correlation coefficient matrices of different datasets are given
by Equations (59)-(61). In (60), we can see that there is one pair of strongly correlated
variables ( 1st and 2nd variables whose correlation coefficient is 0.9). In (61), there are
two pairs of strongly correlated variables (1st and 4th, 2nd and 3rd, whose correlation
coefficients are both 0.9). Thus, we will refer to the datasets corresponding to Equations
(59), (60), and (61) as “no highly correlated pair”, “1 highly correlated pair”, and “2
highly correlated pairs”, respectively. We normalized each dataset prior to clustering.
The number of clusters inferred by GBHC-TREE and GBHC-NODE are shown in Ta-
ble S4. The number of inferred clusters tends to increase as the number of strongly
correlated pairs of variables increases.

1.0 05 0.5 0.5
0.5 1.0 05 0.5
0.5 05 1.0 0.5
0.5 05 05 1.0

1.0 0.5 0.5 0.9
05 1.0 05 0.5
C2=105 05 L0 05 (60)

09 05 05 1.0

1.0 05 0.5 09
0.5 1.0 09 0.5
0.5 09 1.0 0.5
09 05 05 1.0

Table S4: Number of clusters inferred
by GBHC, subject to the number of
strongly correlated pairs. The actual
number of cluster is 1.

Algorithm no pair | 1 pairs | 2 pairs
GBHC-TREE 1 2 3
GBHC-NODE 2 3 4
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S6 Sample Clustering Experiment

Table S5: P-value for the difference between ARIs. Let ARI,., and ARI., be a vector of
ARIs produced by a row algorithm and a column algorithm in the table, respectively. The p-value is
calculated by Wilcoxon signed-rank test, in which the hypotheses are Hg : median(ARIow—ARIc) = 0
and H; : median(ARIow — ARIco) > 0. Hp is rejected at the significance level 0.05.

Algorithm APC | APE | GBHC-| GBHC-| MBHC| AC | AE | CC | CE | KC | KE

TREE | NODE
APC 1.00 | 0.36 0.83 0.92 0.61 | 0.04 | 0.06 | 0.32 | 0.12 | 0.38 | 0.76
APE 0.68 | 1.00 0.76 0.94 0.54 | 0.06 | 0.03 | 0.50 | 0.06 | 0.13 | 0.46

GBHC-TREE | 0.20 | 0.28 1.00 0.78 0.23 | 0.02 | 0.01 | 0.23 | 0.02 | 0.08 | 0.15
GBHC-NODE | 0.10 | 0.08 0.26 1.00 0.04 | 0.01 | 0.00 | 0.21 | 0.03 | 0.08 | 0.12

MBHC 0.43 | 0.50 0.79 0.97 1.00 0.14 | 0.09 | 0.64 | 0.05 | 0.48 | 0.65
AC 0.97 | 0.95 0.99 0.99 0.88 1.00 | 0.17 | 0.91 | 0.62 | 0.90 | 0.91
AE 0.95 | 0.98 0.99 1.00 0.93 0.86 | 1.00 | 0.96 | 0.88 | 0.93 | 0.98
CcC 0.71 | 0.54 0.79 0.82 0.40 0.10 | 0.05 | 1.00 | 0.05 | 0.52 | 0.68
CE 0.90 | 0.95 0.99 0.98 0.96 0.42 | 0.14 | 0.96 | 1.00 | 0.79 | 0.97
KC 0.66 | 0.89 0.94 0.94 0.55 0.12 | 0.09 | 0.52 | 0.23 | 1.00 | 0.72
KE 0.28 | 0.58 0.87 0.90 0.38 0.11 | 0.02 | 0.35 | 0.04 | 0.32 | 1.00

Bold numbers highlight p-value < 0.05.

Table S6: Number of sample clusters inferred by clustering algorithm.

Dataset Name | Actual | APC | APE | GBHC-| GBHC-| MBHC | AC | AE | CC | CE | KC | KE
Classes TREE | NODE

Blood1 2 7 9 3 5 9 3 4 3 3 3 3
Blood2 2 11 10 6 8 11 3 3 9 9 3 3
Bone Marrow 2 10 12 2 4 14 15 4 17 | 10 3 5
Brainl 2 5 4 5 5 8 9 3 3 5 3 3
Brain2 5 6 8 3 5 7 12 | 11 3 5 3 3
Colon 2 6 7 1 1 10 3 7 8 4 3 3
Lung 3 2 2 2 2 3 3 3 3 3 7 5
Multi-tissuel 14 19 22 11 15 13 3 3 7 3 3 3
Multi-tissue2 10 20 20 13 14 27 8 3 17 8 5 8
Prostatel 2 10 13 5 8 12 3 3 3 3 3 3
Prostate2 3 3 3 3 3 5 3 7 4 ) 3 3
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Table S7: Absolute difference between the actual and the inferred number of sample
clusters.

Dataset Name | APC | APE | GBHC-| GBHC-| MBHC | AC | AE | CC | CE | KC | KE
TREE | NODE
Blood1 5 7 1 3 7 1 2 1 1 1 1
Blood2 9 8 4 6 9 1 1 7 7 1 1
Bone Marrow 8 10 0 2 12 13 2 15 8 1 3
Brainl 3 2 3 3 6 7 1 1 3 1 1
Brain2 1 3 2 0 2 7 6 2 0 2 2
Colon 4 5 1 1 8 1 5 6 2 1 1
Lung 1 1 1 1 0 0 0 0 0 4 2
Multi-tissuel 5 8 3 1 1 11 11 7 11 11 11
Multi-tissue2 10 10 3 4 17 2 7 7 2 5 2
Prostatel 8 11 3 6 10 1 1 1 1 1 1
Prostate2 0 0 0 0 2 0 4 1 2 0 0
mean 491 | 591 1.91 2.45 6.73 4.00 | 3.64 | 4.36 | 3.36 | 2.55 | 2.27
SEM 1.05 | 1.18 0.41 0.65 1.58 141 | 1.01 | 1.37 | 1.10 | 0.96 | 0.91

Bold underlined numbers highlight the first three lowest averages of absolute difference.

Table S8: P-value for the difference between errors of inferred number of sample clusters.
Let 0,ow and 6., be a vector of absolute differences between the actual and the inferred number of
sample clusters produced by a row algorithm and a column algorithm in the table, respectively. The
p-value is calculated by Wilcoxon signed-rank test, in which the hypotheses are Hg : median(fyow —
Oco1) = 0 and H; : median(brow — Oco1) < 0. Hp is rejected at the significance level 0.05.

Algorithm APC | APE | GBHC-| GBHC-| MBHC | AC | AE | CC | CE | KC | KE

TREE | NODE
APC 1.00 | 0.03 | 0.99 1.00 0.04 | 075|083 | 0.76 | 0.92 | 0.95 | 0.97
APE 0.98 | 1.00 0.99 1.00 0.15 0.90 | 0.92 | 0.93 | 0.96 | 0.98 | 0.99

GBHC-TREE | 0.01 | 0.01 1.00 0.17 0.01 | 0.15 | 0.06 | 0.05 | 0.17 | 0.37 | 0.53
GBHC-NODE | 0.01 | 0.01 | 0.87 1.00 0.00 | 0.28 | 0.27 | 0.14 | 0.36 | 0.62 | 0.78

MBHC 0.97 | 0.87 0.99 1.00 1.00 0.89 1094 | 093 | 0.96 | 0.97 | 0.96
AC 0.29 | 0.12 0.88 0.76 0.13 1.00 | 0.57 | 0.39 | 0.74 | 0.91 | 0.95
AE 0.20 | 0.09 0.95 0.76 0.08 0.50 | 1.00 | 0.50 | 0.61 | 0.94 | 0.96
CC 0.27 | 0.08 0.96 0.88 0.09 0.66 | 0.57 | 1.00 | 0.86 | 0.90 | 0.95
CE 0.10 | 0.04 | 0.86 0.68 0.05 | 034|044 | 0.18 | 1.00 | 0.74 | 0.90
KC 0.06 | 0.02 | 0.70 0.43 0.04 | 0.14 | 0.08 | 0.14 | 0.31 | 1.00 | 0.86
KE 0.04 | 0.02 | 0.53 0.26 0.05 | 0.10 | 0.06 | 0.08 | 0.13 | 0.29 | 1.00

Bold numbers highlight p-value < 0.05
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Table S9: Execution time in the sample clustering experiment. The unit of time is seconds.
Dataset Name | APC | APE | GBHC- | GBHC-| MBHC | AC | AE | CC | CE | KC KE

TREE | NODE

Blood1 0.2 0.2 | 1,699.8 | 187.9 7980 | 03|05 |04 |04]| 96 96.8

Blood?2 0.3 0.2 | 1,4259 | 1824 578.6 | 05|04 |07 04| 89 55.8
Bone Marrow | 0.2 1.2 | 2,115.6 | 248.1 | 1,5632.8 | 06 | 04 | 0.4 | 0.5 | 12.2 150.7

Brainl 0.1 0.1 179.6 22.9 96.2 01)02]02|02] 09 7.2

Brain2 0.1 0.1 465.2 69.0 3278 |02 03]02]02]| 27 194

Colon 0.1 0.1 542.3 41.5 6125 | 0.1 [ 0.2 |03 | 02| 3.0 22.5

Lung 0.0 0.0 144.0 14.6 83.0 0.1 0110101 0.5 4.6

Multi-tissuel 0.5 0.6 | 13,606.0| 1,212.5| 5,169.7 | 1.2 | 0.9 | 1.3 | 1.1 | 147.8 | 1,512.2
Multi-tissue2 0.5 1.1 | 14,285.0| 1,255.2| 4,908.7 | 0.9 | 0.6 | 1.1 | 1.0 | 62.0 480.4
Prostatel 0.2 0.3 | 2,786.0 | 202.4 2699 | 05|04 06| 05| 11.0 95.5
Prostate2 0.0 0.0 113.7 11.5 38.2 0.1]01]01]|0.1 0.4 3.1
mean 0.2 0.3 | 3,396.6 | 313.5 | 1,310.5 | 0.4 | 0.4 | 0.5 | 0.4 | 23.5 215.3

S7 Gene Clustering Experiment

Table S10: P-value for the difference between BHIs. Let BHI,,, and BHI., be a vector of
BHIs produced by a row algorithm and a column algorithm in the table, respectively. The p-value is
calculated by Wilcoxon signed-rank test, in which the hypotheses are Hg : median(BHI,ow — BHI) = 0
and H; : median(BHI, o, — BHI.) > 0. Hy is rejected at the significance level 0.05.

Algorithm APC | APE | GBHC-| GBHC-| MBHC | AC | AE | CC CE | KC | KE

TREE | NODE
APC 1.00 | 0.99 0.86 0.90 0.71 0.03 | 0.38 | 0.01 | 0.12 | 0.01 | 0.01
APE 0.01 | 1.00 0.31 0.20 0.16 0.01 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00

GBHC-TREE | 0.16 | 0.72 1.00 0.71 0.52 0.02 | 0.33 | 0.01 | 0.02 | 0.01 | 0.01
GBHC-NODE | 0.12 | 0.83 0.32 1.00 0.29 0.01 | 0.35 | 0.00 | 0.02 | 0.00 | 0.00

MBHC 0.32 | 0.86 0.52 0.74 1.00 0.02 | 0.27 | 0.01 | 0.01 | 0.01 | 0.03
AC 0.97 | 0.99 0.99 0.99 0.98 1.00 | 0.86 | 0.90 | 0.94 | 0.89 | 0.87
AE 0.65 | 0.84 0.70 0.68 0.76 0.16 | 1.00 | 0.18 | 0.18 | 0.15 | 0.12
CC 0.99 | 1.00 0.99 1.00 1.00 0.12 | 0.84 | 1.00 | 0.85 | 0.91 | 0.96
CE 0.89 | 1.00 0.98 0.99 0.99 0.07 | 0.85| 0.18 | 1.00 | 0.19 | 0.25
KC 0.99 | 1.00 1.00 1.00 0.99 0.13 | 0.87 | 0.11 | 0.84 | 1.00 | 0.97
KE 0.99 | 1.00 0.99 1.00 0.97 0.15 | 0.90 | 0.05 | 0.78 | 0.03 | 1.00

Bold numbers highlight p-value < 0.05.
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Table S11: Number of gene clusters inferred by clustering algorithm.

Dataset Name | # Probes | APC | APE | GBHC-| GBHC-| MBHC | AC | AE | CC | CE | KC | KE
TREE | NODE

Blood1 1,081 78 91 53 60 8 3 3 3 5 5 3
Blood2 798 51 57 34 36 10 3 7 5 6 3 3
Bone Marrow 1,868 140 | 122 39 71 11 9 22 3 13 | 4 3
Brain1 1,070 65 76 21 48 16 7 3 3 3 3 4
Brain2 1,379 111 112 23 56 5 3 3 6 10 | 3 3
Colon 2,202 169 165 71 101 11 5 3 7 3 4 3
Lung 2,995 98 98 60 70 20 3 9 3 3 6 3
Multi-tissuel 1,363 92 156 35 93 5 66 5 4 5 3 4
Multi-tissue2 1,571 100 | 110 72 137 36 3 6 3 3 4 4
Prostatel 339 29 30 35 39 27 3 8 3 3 3 3
Prostate2 1,348 37 64 49 69 8 3 3 3 3 3 4

Table S12: Execution time in the gene clustering experiment. The unit of time is seconds.

Dataset Name | APC | APE | GBHC- | GBHC- | MBHC | AC | AE | CC | CE KC KE
TREE | NODE
Blood1 155 | 275 | 94945 | 2,963.6 | 3,448.7 | 7.7 | 4.5 | 4.7 | 4.2 | 117.6 | 453.0
Blood2 71 | 81 | 48358 | 1,723.9 | 22523 | 29 | 3.3 | 40 | 3.2 | 1058 | 221.8
Bone Marrow | 55.1 | 46.6 | 56,266.0 | 8,456.3 | 14,241.0 | 14.8 | 82 | 9.8 | 7.9 | 347.2 | 1,615.0
Brainl 12.3 | 185 | 6,172.0 | 2,234.8 | 1,689.5 | 49 | 42 | 5.3 | 4.1 | 165.1 | 121.4
Brain2 225 | 345 | 16,392.0| 4,593.9 | 3,480.8 | 6.3 | 5.8 | 7.9 | 5.9 | 144.3 | 378.7
Colon 98.8 | 95.6 | 74,556.0| 9,635.4 | 8,498.4 | 16.6 | 9.0 | 12.4 | 9.3 | 311.5 | 888.1
Lung 111.0 | 121.8 | 92,336.0 | 16,109.0 | 10,755.0 | 12.5 | 12.2 | 15.1 | 11.5 | 382.8 | 468.7
Multi-tissuel | 84.4 | 44.7 | 89,196.0 | 7,584.4 | 13,102.0 | 10.5 | 9.4 | 6.6 | 5.5 | 100.2 | 639.0
Multi-tissue2 | 40.8 | 28.8 | 55,464.0 | 7,919.9 | 19,867.0 | 10.6 | 6.9 | 8.6 | 6.7 | 424.3 | 2,501.5
Prostatel 1.6 | 1.4 | 587.2 | 332.3 460.8 | 1.5 | 14 | 1.9 | 1.3 | 509 | 41.7
Prostate2 21.0 | 16.8 | 7,763.3 | 3,443.0 | 1,800.6 | 5.4 | 55 | 6.3 | 5.2 | 134.1] 113.1
mean 427 | 404 | 375512 5,008.8 | 7,236.8 | 93.8 | 70.4 | 82.5 | 64.9 | 207.6 | 676.5
References

[1] Hager W, Zhang H (2005) A new conjugate gradient method with guaranteed descent

and an efficient line search. SIAM Journal on Optimization 16: 170-192.

15




