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Supporting Information

This appendix provides the explicit mathematical expressions to be plugged in the equations
presented in §2.6 to determine the traction stresses. These formulae should be preferred to
those in the Supporting Information of del Álamo et al. [13]. The latter were particularized to
two-dimensional boundary conditions and contained a number of typographical errors that have
been corrected here. The resolvant matrix of the Fourier transform of the elastostatic equation
is

U(α,β, z) =





α2z cosh(k z)
4k2(1−σ) + [4(1−σ)k2−α2] sinh(k z)

4k3(1−σ)

αβ z cosh(k z)
4k2(1−σ) − αβ sinh(k z)

4k3(1−σ)

−i sinh(k z)zα
4k(1−σ)




(22)

V(α,β, z) =





αβ z cosh(k z)
4k2(1−σ) − αβ sinh(k z)

4k3(1−σ)
β2z cosh(k z)
4k2(1−σ) + [4(1−σ)k2−β2] sinh(k z)

4k3(1−σ)

−i sinh(k z)zβ
4k(1−σ)




(23)

W(α,β, z) =





−iα z sinh(k z)
2k (1−2σ)

−iβ z sinh(k z)
2k (1−2σ)

−z cosh(k z)
2(1−2 σ) + (3−4σ) sinh(k z)

2k (1−2σ)




. (24)

The inverse of the resolvant matrix particularized at the surface of the substratum is given
by

[
Umn(h) Vmn(h) Wmn(h)

]−1
=




C1u C1v C1w

C2u C2v C2w

C3u C3v C3w



 , (25)

where

C1u =
(−4β2h2+2 (−3+4σ)2(cosh(2 k h)−1))k5+8α2h (−1+σ) sinh(2 k h)k4−2α2(cosh(2 k h)−1)(−3+4σ)k3

k4(4h2k2+3(−3+4σ)2) sinh(k h)−(−3+4σ)2k4 sinh(3 k h)
,

C1v = 4α k5h2β+8αβ h (−1+σ) sinh(2 k h)k4+(−2αβ (−3+4σ) cosh(2 k h)+2αβ (−3+4σ))k3

k4(4h2k2+3 (−3+4σ)2) sinh(k h)−(−3+4σ)2k4 sinh(3 k h)
,

C1w = −8 ik5α (−1+σ)h (cosh(2 k h)−1)

k4(4h2k2+3 (−3+4σ)2) sinh(k h)−(−3+4σ)2k4 sinh(3 k h)
,

C2u(α,β) = C1v(β,α),

C2v(α,β) = C1u(β,α),

C2w(α,β) = C1w(β,α),

C3u(α,β) =
−4 iα (−1+2σ)h sinh(k h)k3

(−3+4σ)2k2 cosh(2 k h)−2h2k4−(−3+4σ)2k2
,
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C3v(α,β) = C3u(β,α),

C3w
−4 k4h (−1+2 σ) cosh(k h)+4 sinh(k h)(−1+2σ)(−3+4 σ)k3

(−3+4σ)2k2 cosh(2 k h)−2h2k4−(−3+4σ)2k2
.

Finally, the linear operator that defines Hooke’s law in Fourier space can be written as

H =
E

2(1 + σ)




0 0 iαm 1 0 0
0 0 iβn 0 1 0

2iαmσ
(1−2σ)

2iβnσ
(1−2σ) 0 0 0 2(1−σ)

(1−2σ)



 . (26)
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(a) u (b) v (c) w

(d) τxz, 3D-TFM (e) τyz , 3D-TFM (f) τzz , 3D-TFM

(g) τxz, 2D-TFM [13] (h) τyz , 2D-TFM [13] (i) τzz , 2D-TFM [13]

(j) τxz, 2D-TFM [15] (k) τyz , 2D-TFM [15] (l) τzz , 2D-TFM [15]

Figure S1. Side by side comparison of 3D Fourier TFM versus previous 2D
methods [13, 15] for a synthetic deformation field representative of the
deformation pattern exerted by migrating amoeboid cells. The Poisson’s ratio is
σ = 0.3 and the substratum thickness, h = 2∆, is equal to the length of the “synthetic cell”.
The plots in the top row show the synthetic deformation field in the x direction (eq. 11, panel
a), y direction (zero, panel b) and z direction (eq. 13, panel c). The second row shows the
traction stresses calculated from the displacements in panels (a)-(c) by 3D Fourier TFM. (d),
τxz; (e), τyz; (f), τzz. The third row shows the traction stresses calculated from the
displacements in panels (a)-(c) by 2D Fourier TFM under the assumption of zero normal
displacements on the substratum’s surface (i.e. w(z = h) = 0 as in ref. [15]). (g), τxz; (h), τyz;
(i), τzz. The last row shows the traction stresses calculated from the displacements in panels
(a)-(c) by 2D Fourier TFM under the assumption of zero normal stresses on the substratum’s
surface (i.e. τzz(z = h) = 0 as in ref. [13]). (j), τxz; (k), τyz; (l), τzz.
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Figure S2. Example of the three-dimensional cross-correlation of fluorescence
intensity, R(u, v, w), for a pair of interrogation boxes of size 24× 24× 12 in the x, y
and z directions. The three-dimensional location of the peak of the cross-correlation yields
the relative displacement between the two interrogation boxes. The signal-to-noise ratio in this
example, s2n = 2.22, is determined by the ratio of the maximum value of the cross-correlation
(R1 = 1) to the second highest local maximum (R2 = 0.45). (a), Contour map of a
two-dimensional section of the cross-correlation for zero displacement in the z direction,
R(u, v, w = 0). (b), Contour map of a two-dimensional section of the cross-correlation for zero
displacement in y direction, R(u, v = 0, w). The insets in both panels are height maps of each
two-dimensional section of R(u, v, w).
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Figure S3. Fröbenius norm of the Green’s function used by different TFM
methods, ||Ĝ|| (eq. 20), for a value of the Poisson’s ratio σ = 0.45. The four panels in
the top row (a–d) show surface plots of ||Ĝ|| as a function of the horizontal wavelengths of the
deformation field (λx,λy). (a), present 3D TFM method; (b), 2D TFM under the assumption
of zero normal stresses on the substratum’s surface (i.e. τzz(z = h) = 0 as in ref. [13]); (c), 2D
TFM under the assumption of zero normal displacements on the substratum’s surface (i.e.
w(z = h) = 0 as in ref. [15]); (d), Boussinesq’s traction cytrometry assuming infinitely-thick
substratum (as in refs. [10, 12]). The symbol curves in these plots indicate the sections of ||Ĝ||
represented in panel (e). (e), ||Ĝ|| along the line λ = λx = λy from different TFM methods,
represented as a function of λ/h.


