Supporting Information

This appendix provides the explicit mathematical expressions to be plugged in the equations presented in $\S 2.6$ to determine the traction stresses. These formulae should be preferred to those in the Supporting Information of del Álamo et al. [13]. The latter were particularized to two-dimensional boundary conditions and contained a number of typographical errors that have been corrected here. The resolvant matrix of the Fourier transform of the elastostatic equation is

$$
\begin{align*}
& \mathbf{U}(\alpha, \beta, z)=\left[\begin{array}{c}
\frac{\alpha^{2} z \cosh (k z)}{4 k^{2}(1-\sigma)}+\frac{\left[4(1-\sigma) k^{2}-\alpha^{2}\right] \sinh (k z)}{4 k^{3}(1-\sigma)} \\
\frac{\alpha \beta z \cosh (k z)}{4 k^{2}(1-\sigma)}-\frac{\alpha \beta \sinh (k z)}{4 k^{3}(1-\sigma)} \\
\frac{-i \sinh (k z) z \alpha}{4 k(1-\sigma)}
\end{array}\right] \tag{22}\\
& \mathbf{V}(\alpha, \beta, z)=\left[\begin{array}{c}
\frac{\alpha \beta z \cosh (k z)}{4 k^{2}(1-\sigma)}-\frac{\alpha \beta \sinh (k z)}{4 k^{3}(1-\sigma)} \\
\frac{\beta^{2} z \cosh (k z)}{4 k^{2}(1-\sigma)}+\frac{\left[4(1-\sigma) k^{2}-\beta^{2}\right] \sinh (k z)}{4 k^{3}(1-\sigma)} \\
\frac{-i \sinh (k z) z \beta}{4 k(1-\sigma)} \\
\frac{-i \alpha z \sinh (k z)}{2 k(1-2 \sigma)} \\
\frac{-i \beta z \sinh (k z)}{2 k(1-2 \sigma)}
\end{array}\right] \tag{23}\\
& \mathbf{W}(\alpha, \beta, z)=\left[\begin{array}{c}
\left.\begin{array}{c}
2
\end{array}\right] \\
\frac{-z \cosh (k z)}{2(1-2 \sigma)}+\frac{(3-4 \sigma) \sinh (k z)}{2 k(1-2 \sigma)}
\end{array}\right] \tag{24}
\end{align*}
$$

The inverse of the resolvant matrix particularized at the surface of the substratum is given by

$$
\left[\mathbf{U}_{m n}(h)\left|\mathbf{V}_{m n}(h)\right| \mathbf{W}_{m n}(h)\right]^{-1}=\left[\begin{array}{lll}
C_{1 u} & C_{1 v} & C_{1 w} \tag{25}\\
C_{2 u} & C_{2 v} & C_{2 w} \\
C_{3 u} & C_{3 v} & C_{3 w}
\end{array}\right]
$$

where

$$
\begin{gathered}
C_{1 u}=\frac{\left(-4 \beta^{2} h^{2}+2(-3+4 \sigma)^{2}(\cosh (2 k h)-1)\right) k^{5}+8 \alpha^{2} h(-1+\sigma) \sinh (2 k h) k^{4}-2 \alpha^{2}(\cosh (2 k h)-1)(-3+4 \sigma) k^{3}}{k^{4}\left(4 h^{2} k^{2}+3(-3+4 \sigma)^{2}\right) \sinh (k h)-(-3+4 \sigma)^{2} k^{4} \sinh (3 k h)}, \\
C_{1 v}=\frac{4 \alpha k^{5} h^{2} \beta+8 \alpha \beta h(-1+\sigma) \sinh (2 k h) k^{4}+(-2 \alpha \beta(-3+4 \sigma) \cosh (2 k h)+2 \alpha \beta(-3+4 \sigma)) k^{3}}{k^{4}\left(4 h^{2} k^{2}+3(-3+4 \sigma)^{2}\right) \sinh (k h)-(-3+4 \sigma)^{2} k^{4} \sinh (3 k h)}, \\
C_{1 w}=\frac{-8 i k^{5} \alpha(-1+\sigma) h(\cosh (2 k h)-1)}{k^{4}\left(4 h^{2} k^{2}+3(-3+4 \sigma)^{2}\right) \sinh (k h)-(-3+4 \sigma)^{2} k^{4} \sinh (3 k h)}, \\
C_{2 u}(\alpha, \beta)=C_{1 v}(\beta, \alpha), \\
C_{2 v}(\alpha, \beta)=C_{1 u}(\beta, \alpha), \\
C_{2 w}(\alpha, \beta)=C_{1 w}(\beta, \alpha), \\
C_{3 u}(\alpha, \beta)=\frac{-4 i \alpha(-1+2 \sigma) h \sinh (k h) k^{3}}{(-3+4 \sigma)^{2} k^{2} \cosh (2 k h)-2 h^{2} k^{4}-(-3+4 \sigma)^{2} k^{2}},
\end{gathered}
$$

$$
\begin{gathered}
C_{3 v}(\alpha, \beta)=C_{3 u}(\beta, \alpha), \\
C_{3 w} \frac{-4 k^{4} h(-1+2 \sigma) \cosh (k h)+4 \sinh (k h)(-1+2 \sigma)(-3+4 \sigma) k^{3}}{(-3+4 \sigma)^{2} k^{2} \cosh (2 k h)-2 h^{2} k^{4}-(-3+4 \sigma)^{2} k^{2}} .
\end{gathered}
$$

Finally, the linear operator that defines Hooke's law in Fourier space can be written as

$$
\mathcal{H}=\frac{E}{2(1+\sigma)}\left[\begin{array}{cccccc}
0 & 0 & i \alpha_{m} & 1 & 0 & 0 \tag{26}\\
0 & 0 & i \beta_{n} & 0 & 1 & 0 \\
\frac{2 i \alpha_{m} \sigma}{(1-2 \sigma)} & \frac{2 i \beta_{n} \sigma}{(1-2 \sigma)} & 0 & 0 & 0 & \frac{2(1-\sigma)}{(1-2 \sigma)}
\end{array}\right] .
$$

Figure S1. Side by side comparison of 3D Fourier TFM versus previous 2D methods $[13,15]$ for a synthetic deformation field representative of the deformation pattern exerted by migrating amoeboid cells. The Poisson's ratio is $\sigma=0.3$ and the substratum thickness, $h=2 \Delta$, is equal to the length of the "synthetic cell". The plots in the top row show the synthetic deformation field in the x direction (eq. 11, panel a), y direction (zero, panel b) and z direction (eq. 13, panel c). The second row shows the traction stresses calculated from the displacements in panels $(a)-(c)$ by 3D Fourier TFM. (d), $\tau_{x z} ;(e), \tau_{y z} ;(f), \tau_{z z}$. The third row shows the traction stresses calculated from the displacements in panels $(a)-(c)$ by 2D Fourier TFM under the assumption of zero normal displacements on the substratum's surface (i.e. $w(z=h)=0$ as in ref. [15]). $(g), \tau_{x z} ;(h), \tau_{y z}$; (i), $\tau_{z z}$. The last row shows the traction stresses calculated from the displacements in panels (a)-(c) by 2D Fourier TFM under the assumption of zero normal stresses on the substratum's surface (i.e. $\tau_{z z}(z=h)=0$ as in ref. [13]). $(j), \tau_{x z} ;(k), \tau_{y z} ;(l), \tau_{z z}$.

Figure S2. Example of the three-dimensional cross-correlation of fluorescence intensity, $R(u, v, w)$, for a pair of interrogation boxes of size $24 \times 24 \times 12$ in the x, y and z directions. The three-dimensional location of the peak of the cross-correlation yields the relative displacement between the two interrogation boxes. The signal-to-noise ratio in this example, $s 2 n=2.22$, is determined by the ratio of the maximum value of the cross-correlation ($R_{1}=1$) to the second highest local maximum ($R_{2}=0.45$). (a), Contour map of a two-dimensional section of the cross-correlation for zero displacement in the z direction, $R(u, v, w=0)$. (b), Contour map of a two-dimensional section of the cross-correlation for zero displacement in y direction, $R(u, v=0, w)$. The insets in both panels are height maps of each two-dimensional section of $R(u, v, w)$.

Figure S3. Fröbenius norm of the Green's function used by different TFM methods, $\|\widehat{\mathcal{G}}\|$ (eq. 20), for a value of the Poisson's ratio $\sigma=0.45$. The four panels in the top row $(a-d)$ show surface plots of $\|\widehat{\mathcal{G}}\|$ as a function of the horizontal wavelengths of the deformation field $\left(\lambda_{x}, \lambda_{y}\right)$. (a), present 3D TFM method; (b), 2D TFM under the assumption of zero normal stresses on the substratum's surface (i.e. $\tau_{z z}(z=h)=0$ as in ref. [13]); (c), 2D TFM under the assumption of zero normal displacements on the substratum's surface (i.e. $w(z=h)=0$ as in ref. [15]); (d), Boussinesq's traction cytrometry assuming infinitely-thick substratum (as in refs. [10,12]). The symbol curves in these plots indicate the sections of $\|\widehat{\mathcal{G}}\|$ represented in panel (e). (e), \| $\mid \widehat{\mathcal{G}} \|$ along the line $\lambda=\lambda_{x}=\lambda_{y}$ from different TFM methods, represented as a function of λ / h.

