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S0: The Posterior Distribution

Let σ2 denote the common prior variance of αi and βξ
i . Under the assumption of prior independence, we

have

π(α0,α,Mξ,βξ, σ
2,D|H1) = π(α0,α,Mξ,βξ, σ

2|H1,D)π(D|H1)

= f1(Y |α0,α,Mξ,βξ)π(α0,α|σ2)π(Mξ|H1)π(βξ|Mξ,H1, σ
2)π(σ2)

=
n∏

i=1

{
[P (Yi = 1|α0,α,Mξ,βξ,H1)]Yi [P (Yi = 0|α0,α,Mξ,βξ,H1)]1−Yi
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2πσ
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Γ(a)[Γ(a, b/A)− Γ(a, b/B)]
e−b/σ2

σ2(a+1)
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δξ(i)
i (1− νi)1−δξ(i)

1−∏P
i=1(1− νi)

,

(1)

where π(α0,α,Mξ,βξ, σ
2|H1,D) is the posterior distribution of (α0,α,Mξ,βξ, σ

2) conditioned on H1,
and P (Yi = 1| · · · ) denotes the disease probability of subject i under model Mξ. After integrating out σ2

over the interval [A,B], we have

π(α0,α,Mξ,βξ,D|H1) =
n∏

i=1

{
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Similarly, conditioned on the null hypothesis H0, we have

π(α0,α,D|H0) = π(α0,α|D,H0)π(D|H0)

=
n∏

i=1

{
[P (Yi = 1|α0,α,H0)]Yi [P (Yi = 0|α0,α,H0)]1−Yi

}
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where π(α0,α|D,H0) is the posterior distribution of (α0,α) conditioned on H0, and P (Yi = 1|α0,α)
denotes the disease probability of subject i under the null model.
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S1: Consistency of Rare Variant Selection

To justify the BRVD, we refer to the Bayesian theory developed in [1]. Rewrite the dataset as (y(i), x(i))n
i=1

by ignoring the covariates, where x(i) = (x(i)
1 , . . . , x

(i)
Pn

) denotes the genotype of subject i. To emphasize
the fact that the number of variants in the dataset can increase with the sample size n, we re-denote P by
Pn in the Appendix. Let f = f(y|x) denote the true density of y conditioned on x, and let f̂ = f̂(y|x,Mξ)
denote the conditional density proposed by the posterior π(Mξ|D). Let vx(dx) denote the probability
measure for x, and vy(dy) the dominating measure for the conditional densities f and f̂ . Assume that
the data for n subjects are independent and identically distributed based on f(y, x)vx(dx)vy(dy). Let

d(f̂ , f) =

√∫ ∫
(
√
f̂ −

√
f)2vy(dy)vx(dx)

denote the Hellinger distance between f̂ and f . Furthermore, we assume the following conditions hold:

(A1) Pn Â nδ for δ > 0, where bn Â an means limn→∞ an/bn = 0.

(A2) The true model is sparse and satisfies the condition limn→∞
∑Pn

i=1 |βj | <∞.

Following Theorem 2 of [1], we have the following lemma:

Lemma 1 (Posterior Consistency) Consider the logistic regression model specified by (1) of the main
text. Assume that the model satisfies the conditions (A1) and (A2), and |xj | ≤ 1 for all j = 1, . . . , Pn.
Let εn be a sequence such that εn ∈ (0, 1] for each n and nε2n Â log(Pn). Suppose that the priors for the
logistic regression are specified by (5)–(9) of the main text, and that γi’s and Kn are chosen such that
the following conditions hold:

(B1) Pn ≤ eC1nα

for some constants C1 > 0 and α ∈ (0, 1) for all large enough n;

(B2) ∆(rn) = infξn:|ξn|=rn

∑
j:j /∈ξn

|βj | ≤ e−C2rn for some constant C2 > 0, where rn = d∑Pn

i=1 νie
denotes the up-rounded expectation of the prior (8) (of the main text);

(B3) C−1
2 log(n) ≤ rn ≤ Kn ≺ nβ for some β ∈ (0, q), where q = min(1− α, δ).

Then for some c > 0 and for all sufficiently large n,

P
{
π[d(f̂ , f) > εn|D] ≥ e−0.5cnε2n

}
≤ e−0.5cnε2n , (4)

where P{·} denotes the probability measure for the data.

This lemma can be viewed as a corollary of Theorem 2 of [1] for our particular choice of priors. The
proof is straightforward as the consequence of the following facts: As implied by (6) (of the main text),
the eigenvalues of the covariance matrix of the prior (7) (of the main text) are bounded by the constants
A and B, and thus max{σ2

β , σ
−2
β } can be bounded by BKn for some constant B > 0.

If we further assume that Pn = O(nκ) for some κ > 0, then nκ(1−γR) ≺ rn ≺ nκ(1−γL). Let Kn = C3rn
for some constant C3 > 1. Then α can be set to a number close to zero. If κ > 1, we can set δ = 1 and
thus any γL ∈ (1− 1/κ, 1) ensures the conditions (B1)–(B3) to be satisfied. If κ ≤ 1, we can set δ = ηκ
for any 0 < η < 1 such that ηκ < 1 − α, then the choice of any γL ∈ (1 − η, 1) ensures the conditions
(B1)–(B3) to be satisfied. Pushing α to its limit 0 and η to its limit 1, we have the range γL ∈ (0, 1) for
κ ≤ 1. Given the choice of γL, the convergence rate can be taken as

εn ∼ n−(1−α−ζ)/2,
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for some ζ ∈ (κ(1− γL), q) with q as defined in (B3).
To establish the consistency of the variant selection rule ξ̂q̂, we specify the following condition on the

identifiability of the true model Mξ∗ , where ξ∗ denotes the set of true causal variants. Let Aεn
= {ξ :

d(f̂(y|x,Mξ), f(y|x)) ≤ εn}, where d(·, ·) denotes the Hellinger distance between f̂ and f . Define

ρj(εn) =
∑

ξ∈Aεn

|δξ∗(j)− δξ(j)|π(ξ|D),

which measures the distance between the true model and the sampled models for feature j in the εn-
neighborhood Aεn .

(C1) (Identifiability of ξ∗) maxj∈{1,2,...,Pn} ρj(εn) → 0 as n→∞ and εn → 0.

This condition states that as n→∞ and εn → 0, the true model is identifiable. In other words, when n
is sufficiently large, if a model results in the same density of y as the true density, then the model must
coincide with the true model. Following from Theorem 3.1 of [2], we have the following lemma:

Lemma 2 Assume that the conditions of Lemma 1 and the condition (C1) hold.

(i) For any ε′n > 0 and all sufficiently large n,

P

(
max

1≤j≤Pn

|qj − δξ∗(j)| ≥ 2
√
ε′n + e−0.5cnε2n

)
≤ Pne

−0.5cnε2n .

(ii) (Sure screening) For all sufficiently large n,

P (ξ∗ ⊂ ξ̂q̂) ≥ 1− sne
−0.5cnε2n ,

where sn denotes the size of ξ∗, for some choice of q̂ ∈ (0, 1), preferably one not close to 0 or 1.

(iii) (Consistency) For all sufficiently large n,

P (ξ∗ = ξ̂0.5) ≥ 1− Pne
−0.5cnε2n .

The proof of Lemma 2 can be found in [2]. This lemma implies that the posterior probability of the
true model will converge to 1, i.e.,

π(Mξ∗ |D) → 1, (5)

as the sample size n goes to infinity. This is the so-called global model consistency in Bayesian variable
selection [3].

S2: The Proposal Distribution Used in SAMC Simulations

The proposal distribution T (ω(t), ω′) used in the SAMC algorithm includes four types of moves, variant
birth, variant death, variant exchange, and coefficient updating, which are described as follows.

Let Mξt denote the model simulated at iteration t, let ω(t) denote the parameter vector of Mξt , and
let ξc

t denote the set of variants excluded from the model Mξt . In the birth step, a variant, say xi, is
randomly selected from the set ξc

t and then a new model Mξ′ is formed by including xi into the current
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model. The regression coefficient for the newly added variant is generated from a normal distribution
with mean 0 and variance given by

σ2
ξt

= [0.5
|ξt|∑

i=1

(βξt

i )2 + b]/[0.5 ∗ |ξt|+ a], (6)

where a and b are prior hyperparameter specified in (6) (of the main text). In the death step, a predictor,
say xj , is randomly selected from the set ξt and then a new model is formed by removing xj from
the current model. In the exchange step, a predictor, say xi, is randomly selected from the set ξc

t and
another predictor, say xj , is randomly selected from the set ξt, and then a new model Mξ′ is formed by
replacing xj by xi in the current model. The regression coefficient for the variant xi is generated from
a normal distribution with mean 0 and variance as given in (6). The coefficient updating step consists
of two substeps, which are to update the covariate coefficients (α0,α) and the variant coefficients βξ,
respectively. The probabilities for these two substeps are 0.3 and 0.7, respectively. The hit-and-run
algorithm [4] is employed for updating both types of regression coefficients.

Since the death and exchange moves cannot be performed for the null model, and the birth move
cannot be performed for the maximum size models, we specify the following proposal probabilities for
the four types of moves conditioned on value of |ξt|:




P (variant birth
∣∣|ξt| = 0) = 1/4,

P (coefficient updating
∣∣|ξt| = 0) = 3/4,

P (variant birth
∣∣0 < |ξt| < Kn) = P (variant death

∣∣0 < |ξt| < Kn) = (variant exchange
∣∣0 < |ξt| < Kn)

= P (coefficient updating) = 1/4,
P (variant death

∣∣|ξt| = Kn) = P (variant exchange
∣∣|ξt| = Kn) = 1/4,

P (coefficient updating
∣∣|ξt| = Kn) = 1/2,

(7)
where Kn < Pn denotes the maximum model size considered by the user.

S3: Rejection region determination for multiple hypothesis tests

Let q̂1, q̂2, . . . , q̂P denote the estimates of the marginal inclusion probabilities of the P variants. Let

zi = Φ−1(q̂i), i = 1, . . . , P,

denote the corresponding marginal inclusion scores (MIS), where Φ(·) denotes the cumulative distribution
function (CDF) of the standard Gaussian distribution. To identify the variants that have significantly
high MIS, we model the MIS by a k-component mixture exponential power distribution, for which the
most right component corresponds to the causal variants and the other components correspond to the
noise variants. In this paper, k is often set to 2 or 3. For a k-component mixture exponential power
distribution, the density function is given by

g(z|ϑk) =
k∑

i=1

$iψ(z|µi, σi, αi), (8)

where ϑk = ($1, µ1, σ1, α1, . . . , $k, µk, σk, αk) contains all parameters of the distribution, $i is the weight
of the ith component with 0 < $i < 1 and

∑m
i=1$i = 1, and

ψ(z|µi, σi, αi) =
αi

2σiΓ(1/αi)
exp {−(|z − µi|/σi)αi} , −∞ < µi <∞, σi > 0, αi > 1, (9)
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where the parameters µi, σi and αi represent the center, dispersion and decay rate of the distribution,
respectively. For αi = 2, the distribution (9) is reduced to N(µi, σ

2
i /2); for 1 < αi < 2, the distribution is

heavy-tailed; and for αi > 2, the distribution is light-tailed. The identifiability of (8) has been established
in [5].

The parameters ϑk can be estimated as in [6] by minimizing the Kullback-Leibler divergence

KL(gϑk
, g) = −

∫
log

{
g(z|ϑm)
g(z)

}
g(z)dz,

where g(z) denotes the unknown true density of zi’s. For a given value of k, the minimization can be
done using the stochastic approximation algorithm, refer to [6] for the details. One significant advantage
of this algorithm is that it permits the general dependence between zi’s. A proof of convergence for this
algorithm can be found in [7]. The cutoff value zr, which corresponds to the setting q̂ = Φ(zr), can be
chosen by controlling the false discovery rate (FDR) of causal features at a pre-specified test level. For a
given rule Λr = {Zi ≥ zr}, the FDR can be estimated by

FDR(Λr) =
P

∑k−1
i=1 $̂i[1− F (zr|µ̂i, σ̂i, α̂i)]

#{zi : zi ≥ zr} , (10)

where #{zi : zi ≥ zr} denotes the number of features with the MIS greater than zr, and F (·) denotes
the CDF of the exponential power distribution (9). Define the q-value [8] as

qs
r(z) = inf

{Λr:z∈Λr}
FDR(Λr), (11)

which can be used as the reference quantity for the decision of multiple hypothesis tests. For example,
we can set the test level to be 0.01, i.e., choosing zr such that qs

r(z) ≤ 0.01 for all z ≥ zr. Clearly, this
rule possesses the sure screening property when n is sufficiently large. Finally, we note that other FDR
methods, e.g. [9], which account for the dependence between testing p-values can also be used here for
determining an appropriate threshold for marginal inclusion probabilities.
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