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1. Materials and Methods 
 
Patents dataset 
 
We created a database of published energy technology patents and patent applications 
worldwide from keyword searches of Delphion (www.delphion.com). This system 
contains patent documents from sources worldwide since the early 1970s or the inception 
of the patent office. The main contributions in numbers of patents in energy technologies 
are the Patent Abstracts of Japan (patent application information available since 1976) 
from the Japan Patent Information Organization (Tokyo, Japan); the United States Patent 
and Trademark Office (Washington, DC, USA, complete information about granted 
patents since 1974, and published patent applications since 2001); the European Patent 
Office (Vienna, Austria, granted patent information since 1980, applications since 1979); 
INPADOC, which contains “71 world patent signatories and legal status information from 
42 patent offices” since 1968; the German Patent and Trademark Office (Munich, 
Germany, granted patents since 1968, applications since 1968); and the World Intellectual 
Property Organization (Geneva, Switzerland, information covering 175 countries since 
1978). 
 
Keywords searches were performed based on approaches outlined in earlier references (1, 
2), with slight modifications that we found improved coverage and reduced the incidence 
of false positives. (There are bibliometric advantages of using keyword searches rather 
than patent codes or classes, including completeness, accuracy, and consistency across 
patent offices.) We specified terms for individual technologies: petroleum, natural gas, 
and coal, which make up fossil fuels; photovoltaics (referred to as ‘solar’ in the paper), 
hydroelectric, geothermal, wind, biofuels, which make up renewable technologies; and 
nuclear fission and fusion, which together make up nuclear technologies.  

Patents for each technology were retrieved via the keyword searches (case insensitive): 

Petroleum: (oil or gasoline or petroleum) and (electric* or energy or power or turbine) 
and (generat*) 

Natural gas: (“natural gas”) and  (electric* or energy or power or generat* or turbine or 
vehicle) 

Coal: “coal” and  (electric* or energy or power or generat* or turbine or vehicle) 
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Solar: (photovoltaic or “photo voltaic” or (solar and cell)) and  (electric* or energy or 
power or generat* or turbine or vehicle) 

Hydroelectric: (“hydro electric” or “hydro power” or hydroelectric or hydropower) and  
(electric* or energy or power or generat* or turbine or vehicle) 

Geothermal: (geothermal or “geo thermal”) and  (electric* or energy or power or 
generat* or turbine or vehicle) 

Wind: “Wind” and  (electric* or energy or power or turbine) and (generat*) 

Biofuels: (“bio fuel” or “bio diesel” or biofuel or biodiesel) and  (electric* or energy or 
power or generat* or turbine or vehicle) 

Nuclear fission: (nuclear fission) and  (electric* or energy or power or generat* or turbine 
or vehicle) 

Nuclear fusion: (nuclear fusion) and  (electric* or energy or power or generat* or turbine 
or vehicle) 

Individual technologies were then aggregated to form the classes of fossil fuel, renewable 
and nuclear technologies, and ultimately the set of patents in energy technology. 

The breakdown of numbers of patents published by technology are given in Table S1 and 
their shares by nation are illustrated in Fig. 2C. Figures in the paper refer to patents 
published unless otherwise noted (e.g. in Figure 4, which is based on patent applications). 

 
Coal 14894 

Fossil Fuels 30771 Petroleum 11601 
Natural Gas 5159 

Solar 21933 

Renewables 41470 
Wind 15279 

Hydroelectric 2462 
Geothermal 1928 

Biofuels 583 
Nuclear Fusion 904 Nuclear 1077 
Nuclear Fission 179 

 

Table S1: Number of total patents per technology sector, up to the end of 2009. Note 
that a small number of patents may appear in more than one technological sector. 

R&D Funding data sources 
International Energy Agency (IEA) data on Public Funding 
Data for public research and development (R&D) funding of selected energy technologies 
was obtained from the International Energy Agency (IEA). These estimates include 
demonstration projects. Figures are given in 2009$ (prices and exchange rates). Data are 
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available at http://wds.iea.org/WDS/ under the category “R&D budgets” (3). Due to lack 
of data, R&D funding from China was not included in the database and analysis. 
 
Data on Private Funding 
US private R&D funding for energy was obtained from the National Science Foundation’s 
Division of Science Resources Statistics, Industrial Research and Development 
Information System (http://www.nsf.gov/statistics/iris/search_hist.cfm?indx=21), and 
from reference (4). 
 
Data on several years (2006 and 2007) of private funding for global private R&D in clean 
energy was obtained from New Energy Finance http://www.newenergymatters.com. 
(Global private R&D funding for clean energy was approximately equal to that of global 
public R&D funding for 2006 and 2007.) 
 
Data on Cumulative Production 
Global production data for solar (photovoltaics) and wind was obtained from references 
(5-7). US coal electricity production data was obtained from reference (8). See Figures S8 
and S10. These are the data used to populate the time series for C, as discussed below. 
 
2. Derivation of production function for patents 
 
We draw on the basic conceptual model of knowledge creation by Griliches (9), which 
relates patenting, P, to public R&D, R, and market size, C, via knowledge K (see Figure 3, 
main manuscript). We modify the conceptual model to capture the relationship between 
the proportional changes in variables, and express it as follows:  
 

€ 

1
P
dP
dt

= α
1
R
dR
dt

+ β
1
C
dC
dt

+δ
1
Δ
dΔ
dt
,  (S1) 

 
which is eq. (2) in the main text, though there we do not show the component relating to 
Δ, as discussed below. We assume (and test against the data) that the coefficients α, β, δ 
are constants in time. Then we can integrate (S3) to obtain   
 

  (S2) 
 
This is the form used below and in the main text in eq. (1) to estimate parameter values 
(where we absorb the Δ dependence in the other terms, see comments below) and verify 
that the ratios α, β are consistent with the hypothesis of their constancy. We also directly 
fit eq. (S1 and 2 in the main text) to the data.   
 
A few comments on this derivation and its consequences are in order: 
 
1)  We have used cumulative quantities over time because the effects of knowledge 
production are nonlocal in time and accumulating. We find empirically that this is 
necessary to account for trends in the data. The treatment of these variables as cumulative 
quantities (stocks) is different from several commonly observed functions in the literature, 

€ 

P(t) = P0R
α (t)Cβ (t)Δγ (t).
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such as the Cobb-Douglas production function, in that even if an input ceases to grow the 
cumulative base in that input will continue to enhance the value of new investment in the 
others. In our model the effects of market driven investment in knowledge creation today 
multiply the cumulative past R&D investment and vice-versa. This is because of the 
character of knowledge, which differs from other produced goods and services to which a 
Cobb-Douglas production function (with non-cumulative inputs) typically applies. In 
practice, past knowledge can become obsolete but the rate at which this happens is 
difficult to quantify. 
 
2) We assume that the quantities R and C can be expressed at a single time lag relative to 
P, which is a particular (simplifying) case in the integration from Eq. (S1) to (S2). It is 
only in the case of wind technologies that we observe a tangible lag, where C lags patents 
by 3-4 years. This may reflect investments that are made ahead of large, planned wind 
installations. These assumptions can be relaxed but only at the cost of introducing 
contributions at more time points, thus more functional freedom in the fit, and potentially 
over-fitting of the data.  
 
3) The quantity Δ is not observed but it could account, for example, for venture capital. 
However, we find that any systematic independent temporal trend that it may introduce in 
patterns of invention is at most very small. An independent factor driving patents would 
be expected to lead to a temporal variation in P0, which is not observed. This implies that 
its variation is either negligible or that it is strongly correlated, and can be expressed in 
terms of, temporal trends in C, and R, i.e.  
 

€ 

δ
1
Δ
dΔ
dt

∝ aδ 1
R
dR
dt

+ bδ 1
C
dC
dt

  (S3) 

 
In this case the measured exponents include an implicit contribution from variations in Δ 
as in 

€ 

α →α + aδ, β →β+ bδ .  However, because we do not know a, b we can only 
assert that they must be approximately constant in time. Note, that in principle they can be 
negative, if the relative variation of Δ and the other variables were anti-correlated.  
 
4) In the observed exponents α, β (absorbing the contributions discussed above) we see 
that α+β <1, which holds empirically in all cases estimated below.  
 
5) The multiplicative effects of knowledge creation on technology improvement, market 
expansion and presumably increased profits, implies that (when examined in the opposite 

direction from the one written above) C ~ P1/β, where 1/β is larger than 1. This 
relationship shows increasing returns to scale in economic performance to knowledge 
creation (proxied by patents), as expected from general theoretical considerations. Once 
created, this virtuous cycle may lead to the self-sustaining improvement of a technology in 
tandem with its market expansion, as suggested in Figure 3. 
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3. Model regression and best-fit parameter estimates 
 
In this section we fit equation 1 in the main text to the globally aggregated time series data 
for cumulative public research and development funding (R&D), production, and patents 
for solar, wind and coal.  The results are shown in Figure 4 where we plot the natural 
logarithm of cumulative patent counts over time. To further verify these results with 
stationary time series, we also fit equation 2 in the main text to the data.  
 

Solar	
   N	
   logP0	
   std	
  error	
   α std	
  error β std	
  error	
   adj-­‐R2	
  

tR=0,	
  tC=0	
   34	
   3.97	
   0.16	
   0.22	
   0.02	
   0.41	
   0.01	
   0.997	
  

tR=	
  0,	
  tC=+1	
   33	
   3.46	
   0.17	
   0.27	
   0.02	
   0.41	
   0.01	
   0.996	
  

tR=-­‐1,	
  tC=0	
   33	
   4.34	
   0.15	
   0.18	
   0.02	
   0.41	
   0.01	
   0.996	
  

tR=-­‐1	
  tC=-­‐1	
   33	
   4.44	
   0.22	
   0.18	
   0.03	
   0.41	
   0.01	
   0.997	
  

Table S2A: Results of applying Eq. (1) in the main text to cumulative patents filed 
globally in solar technologies, cumulative global R&D funding and cumulative global 
production (in terms of module capacity). Patents are aggregated by date of filing. The 
row highlighted indicates the best-fit parameters used in Figure 4 of the main text. Other 
rows show the sensitivity of the parameter estimates fits to different time lags, tR for R&D 
and tC for production, measured in years. (‘+1’ means that patents precede C or R by one 
year.) The parameter estimates are significant in all cases, especially for the best fit, which 
has p values of 2e-16, 1.65e-09 and 8.48e-10 for log P0, α and β respectively.  

 

Solar	
   N	
   α std	
  error β std	
  error	
   adj-­‐R2	
  

tR=0,	
  tC=0	
   34	
   0.22	
   0.03	
   0.35	
   0.02	
   0.850	
  

Table S2B: Results of applying Eq. (2) in the main text to the first difference of the logs 
of cumulative solar patents, R&D funding and production (in terms of module capacity). 
These time series pass the Dickey-Fuller test of stationarity. The row shown is the best-fit 
time lag (which is consistent with that in Table S2A). The parameter estimates are 
significant, with p values of 2.45e-8, and 1.27e-17 for α and β, respectively. 
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Wind	
   N	
   logP0	
   std	
  error	
   α std	
  error β std	
  error	
   adj-­‐R2	
  

tR=-­‐1,	
  tC=+3	
   22	
   2.36	
   0.62	
   0.28	
   0.11	
   0.37	
   0.03	
   0.981	
  

tR=	
  0,	
  tC=+3	
   23	
   2.67	
   0.79	
   0.23	
   0.14	
   0.38	
   0.04	
   0.981	
  

tR=-­‐1,	
  tC=+4	
   21	
   1.71	
   0.57	
   0.40	
   0.10	
   0.32	
   0.03	
   0.980	
  

tR=	
  0,	
  tC=+4	
   22	
   0.99	
   0.59	
   0.51	
   0.11	
   0.30	
   0.03	
   0.983	
  

Table S3A: Results of applying Eq. (1) in the main text to cumulative patents filed 
globally in wind technologies, cumulative global R&D funding and cumulative global 
production (in terms of turbine capacity). The highlighted row indicates the best-fit 
parameters used in Figure 4 of the main text. p-values for best fit parameters (highlighted) 
are 0.105, 7.84 e-5, 1.35 e-9, for log P0, α and β respectively. 

 

Wind	
   N	
   α std	
  error β std	
  error	
   adj-­‐R2	
  

tR=0,	
  tC=+4	
   22	
   0.48	
   0.13	
   0.29	
   0.06	
   0.10	
  

Table S3B: Results of applying Eq. (2) in the main text to the first difference of the logs 
of cumulative wind patents, R&D funding and production (in terms of turbine capacity). 
These time series pass the Dickey-Fuller test of stationarity. The row shown is the best-fit 
time lag (which is consistent with that in Table S3A). Despite the lower value for the 
adjusted-R2 as compared to the fit to Eq. (1), the parameter estimates are significant, with 
p values of 1.55e-3, and 1.01e-4, for α and β respectively. 
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US	
  coal	
   N	
   logP0	
   std	
  error	
   α std	
  error β std	
  error	
   adj-­‐R2	
  

tR=0,	
  	
  tC=0	
   33	
   -­‐5.49	
   0.53	
   0.18	
   0.03	
   0.46	
   0.03	
   0.995	
  

tR=	
  -­‐1,	
  tC=-­‐1	
   32	
   -­‐4.67	
   0.42	
   0.11	
   0.02	
   0.45	
   0.02	
   0.996	
  

tR=-­‐1,	
  tC=	
  0	
   32	
   -­‐4.77	
   0.34	
   0.18	
   0.02	
   0.43	
   0.02	
   0.997	
  

tR=	
  0,	
  tC=-­‐1	
   32	
   -­‐4.99	
   0.49	
   0.13	
   0.04	
   0.46	
   0.03	
   0.995	
  

tR=-­‐2,	
  tC=	
  -­‐2	
   31	
   -­‐4.12	
   0.39	
   0.05	
   0.02	
   0.45	
   0.02	
   0.996	
  

Table S4A: Results of applying Eq. (1) in the main text to coal technologies. Production 
in this case refers to energy generation (rather than capacity). Patents, production and 
R&D investments are for the US only. The highlighted row indicates the best-fit 
parameters used in Figure 4 of the main text. p-values for best fit parameters (highlighted) 
are 1.67e-14, 1.74e-12, < 2e-16. 

 

US	
  coal	
   N	
   α std	
  error β std	
  error	
   adj-­‐R2	
  

tR=-­‐1,	
  tC=0	
   32	
   0.29	
   0.01	
   0.68	
   0.08	
   0.949	
  

Table S4B: Results of applying Eq. (2) in the main text to the first difference of the logs 
of cumulative US coal patents, R&D funding and energy generation. These time series 
pass the Dickey-Fuller test of stationarity. The row shown is the best-fit time lag (which is 
consistent with that in Table S4A). The parameter estimates are significant, with p values 
of 1.67e-23, and 1.74e-9, for α and β respectively. 
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Solar	
  
RDD	
  only	
  

N	
   logP0	
   std	
  error	
   α std	
  error adj-­‐R2	
  

tR=	
  0	
   34	
   -­‐1.05	
   0.73	
   1.03	
   0.08	
   0.830	
  

tR=	
  -­‐1	
   33	
   -­‐0.04	
   0.72	
   0.93	
   0.08	
   0.810	
  

Table S5A: Best fit parameters for solar technologies applying Eq. (1) from the main 
paper but including R&D only (not production). Note that the fits are worse than those of 
Table S2A, suggesting that market growth of the technology is an essential ingredient 
stimulating patents and knowledge creation. 

 

Solar	
  
RDD	
  only	
  

N	
   α std	
  error adj-­‐R2	
  

tR=	
  0	
   34	
   0.51	
   0.05	
   0.161	
  

tR=	
  -­‐1	
   33	
   0.45	
   0.05	
   -­‐0.096	
  

Table S5B: Best fit parameters for solar technologies applying Eq. (2) from the main 
paper but including R&D only (not production). Note that the fits are worse than those of 
Table S2B, indicating the importance of market growth. 
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Wind	
  
RDD	
  only	
  

N	
   logP0	
   std	
  error	
   α std	
  error adj-­‐R2	
  

tR=	
  0	
   26	
   -­‐4.31	
   0.80	
   1.53	
   0.10	
   0.902	
  

tR=	
  -­‐1	
   25	
   -­‐3.51	
   0.87	
   1.45	
   0.11	
   0.879	
  

Table S6A: Best fit parameters for wind energy applying Eq. (1) from the main paper, 
including R&D only. Note that the fits are worse than those of Table S3A. 

 

Wind	
  
RDD	
  only	
  

N	
   α std	
  error adj-­‐R2	
  

tR=	
  0	
   26	
   1.06	
   0.14	
   -­‐1.550	
  

tR=	
  -­‐1	
   25	
   0.86	
   0.16	
   -­‐4.70	
  

Table S6B: Best fit parameters for wind energy technologies applying Eq. (2) from the 
main paper, including R&D only. The fits are worse than those of Table S3B. 
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US	
  coal	
  
RDD	
  only	
  

N	
   logP0	
   std	
  error	
   α std	
  error adj-­‐R2	
  

tR=	
  0	
   33	
   2.27	
   0.16	
   0.60	
   0.02	
   0.959	
  

tR=	
  -­‐1	
   32	
   2.93	
   0.16	
   0.52	
   0.02	
   0.952	
  

Table S7A: Best fit parameters for coal energy technologies in the US applying Eq. (1) 
from the main paper and including R&D only (not production). Note that though the fits 
are worse than those of Table S4A, the difference is smaller than for other technologies. 

 

US	
  coal	
  
RDD	
  only	
  

N	
   α std	
  error adj-­‐R2	
  

tR=	
  0	
   33	
   0.42	
   0.03	
   0.79	
  

tR=	
  -­‐1	
   32	
   0.37	
   0.02	
   0.82	
  

Table S7B: Best fit parameters for US coal applying Eq. (2) from the main paper 
including R&D only (not production). Note that the fits are worse than those of Table 
S4B.	
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4. Supporting figures 

	
  

 

Figure S1: Temporal trends for the fraction of all patents accounted for by energy 
technologies filed in the USA (USPTO). This fraction was computed using US patents 
granted (as reported elsewhere in this study) over the total number of US applications for 
all sectors, with a time lag of two years (the average time between application and 
granting a patent, sometimes referred to as the average pendency time). These trends 
indicate that energy patents are growing faster than overall patenting rates, which 
themselves have been increasing over time due to high growth rates in highly innovative 
sectors such as the semiconductor, computer technology, biotechnology, and medical 
technology industries. The data shows that the fractional high rates of energy patenting are 
mostly due to activity in renewable energy technologies. 
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Figure S2: Citation counts for patents submitted in solar (photovoltaic), coal and 
wind technologies as a function of submission year.  The decay in number of citations 
since 1996 is well modeled by an exponential with temporal constant τ=3.5 years (solid 
blue line) and is common to all technologies. This decay is due to the period necessary for 
any patent to accumulate citations.  

 

Figure S3a: Temporal trends for patents filed in the European Patent Office (EPO) 
for nuclear, fossil and renewable technologies (different colors). Note the earlier high 
relative proportion of innovation in renewables compared to other nations, and the recent 
drop in fossil fuel technologies. 
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Figure S3b: Temporal trends for patents filed in the European Patent Office (EPO) 
for solar and wind energy technologies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4a: Temporal trends for patents filed in China for nuclear, fossil and 
renewable technologies (different colors). Note the rise in fossil fuel technologies, but 
the even faster increase in renewables.  
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Figure S4b: Temporal trends for patents filed in China for coal, oil and gas energy 
technologies.  

 

 

 

 

 

 

 

 

 

 

Figure S4c: Temporal trends for patents filed in China for solar and wind energy 
technologies. 
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Figure S5a: Temporal trends for patents filed in Japan for nuclear, fossil and 
renewable technologies (different colors). Note the recent decline in annual patents, and 
the numbers in relation to Figure S4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5b: Temporal trends for patents filed in Japan for coal, oil and gas energy 
technologies.  
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Figure S5c: Temporal trends for patents filed in Japan for solar and wind energy 
technologies.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S6a: Temporal trends for patents filed in the US for coal, oil and gas energy 
technologies. 
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Figure S6b: Temporal trends for patents filed in the US for solar and wind energy 
technologies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S7: Solar (photovoltaics) and wind cumulative public R&D investment ($2009 
million) for total of IEA nations.  
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Figure S8: Photovoltaics and wind cumulative worldwide production (MW). Note the 
uptick in rates of production for wind in the mid 1990s and solar in the early 2000s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S9: Cumulative public R&D investments in coal based technologies in the US 
($2009 million). The focus on the US is motivated by more limited knowledge spillover 
in the case of coal than solar and wind (higher installation and operating costs). 
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Figure S10: Cumulative energy production in the US from coal based technologies 
(MWh). The focus on electricity (units of energy produced) in this case is motivated by 
the significant costs incurred in the conversion of coal-stored energy to electricity, and the 
potential for innovation to reduce these costs (8). 
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