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Supporting information

Comparing previous estimates of viral clearance rate and viral
degradation rate

Here we investigate the biological plausibility of the ch � dni assumption, by comparing previous esti-
mates of the viral clearance rate to estimates of the viral degradation rate, for various strains of influenza
A:

• Estimates of c from within-host modelling of in vivo data range from 1.4 d−1 (1/c = 17 h) to
28.4 d−1 (1/c = 50.7 min) [1–5]. This range does not include estimates of c from all models within
these references, as several of those models explicitly include some form of time-varying immune
response in addition to the c parameter. As these studies did not estimate either ch or dinf directly,
we treat each estimate of c as an upper bound on the corresponding estimate of ch .

• Daum et al. [6] measured virus degradation via rRT-PCR assays — their results suggest a degra-
dation rate of approximately 0.06–0.19 d−1. We do not include their results for influenza stored
in viral transport medium (VTM), as Daum et al. stated that those results suggested detection of
vRNA via rRT-PCR was hindered for virus stored in VTM. Wang et al. [7] found that there was
no significant change in rRT-PCR viral concentration when virus was stored for up to 3 days at
room temperature in various storage media. Schulze-Horsel et al. [8] measured dni in vitro using
HA assays (which measure viral concentration via the hemagglutinin surface protein rather than
via internal vRNA), and found values of 0 d−1, 0 d−1, and 0.24 d−1 for three different strains
of influenza. Möhler et al. [9] measured the degradation rate of influenza (via HA assays) to be
0.072 d−1.

These estimates support the biological plausibility of the ch � dni assumption.

Further details regarding data fitting

Fixed parameter and biologically realistic ranges for fitted parameters

We fix k = 3 d−1, consistent with estimates obtained when fitting models (with normal or log-normal
delay distributions for L and I) to in vitro data [4, 10]. We investigated fitting for the latent period, k,
but found that not only was k unidentifiable in both models, fitting rather than fixing k also significantly
reduced model inference capability for several other parameters (data not shown).

For all fitted parameters, we specify a range of biologically plausible values (Table S1) which restrict
the parameter space searchable by the genetic algorithm.

Estimating a lower bound for V TCID

inf (0)

Theoretically, influenza infection could be initiated by as little as a single infectious virion in the URT. In
order to set the lower bound for V TCID

inf (0) to a value that corresponds to 1 infectious virion in the URT,
we need to estimate:

1. the number of infectious virions that correspond to 1 TCID50 (Handel et al. [2] estimated this to
be somewhere in the range 1-100),
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2. the conversion factor between infectious virions/ml in the URT and infectious virions/ml in nasal
wash samples when they are assayed (Handel et al. [2] estimated that nasal wash sample concentra-
tions were somewhere in the range of 1-100 times smaller than corresponding URT concentrations,
while Beauchemin et al. [11] found that if a sample was frozen and then thawed before being assayed,
there was about a 10-fold reduction in infectious viral load as measured via plaque assay),

3. the volume of the ferret URT (we estimate this to be approximately 1 ml based on URT volumes [12]
of mammals with similar body weight to the ferrets in the Guarnaccia et al. experiments; i.e.
500–1500 g).

Based on these rough estimates, we assume a conservative lower bound of 10−6 TCID50/ml for V TCID

inf (0).
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Table S1. Biologically realistic parameter ranges.

Parameter Bounds Sourcea

V TCID

inf (0) [10−6, 103] Upper bound informed by initial V TCID

inf measurements
within the Guarnaccia et al. (under review) data; lower
bound based on an estimate of the lowest possible TCID50

value that corresponds to a single infectious virion in the
URT (see “Estimating a lower bound for V TCID

inf (0)”).

ρ(0) [10−1, 1012] Based on the variability of ρ(t) within the Guarnaccia et
al. (under review) datab.

β [10−9, 10−1] Previous in vivo and in vitro modelling estimates of β [1–
3,5, 8, 9, 11,15,16].

δ [0.24, 24] This range corresponds to average productively infected cell
lifetimes (i.e. 1/δ) from 1 h to 100 h, consistent with pre-
vious in vitro observations [9,17,18] as well as both in vivo
and in vitro model-fitting estimates [1–5,8, 9, 11].

p [10−6, 106] Previous in vivo and in vitro modelling estimates of p [1–
5,8, 9, 11,15,16].

c [10−1, 103] Previous in vivo estimates for c obtained from target cell-
limited models in which infection progress is limited by the
availability of susceptible cells, rather than by immune re-
sponse dynamics [1–5].

ch [10−2, 103] Previous in vivo estimates for c obtained from target cell-
limited models in which infection progress is limited by the
availability of susceptible cells, rather than by immune re-
sponse dynamics [1–5]c.

dinf [2, 8] Previous in vitro estimates of dinf [8, 10,11,19–22].
ξ [10−2, 107] Based on the variability of ρ(t) within the Guarnaccia et

al. (under review) data.

Lower and upper bounds for each fitted parameter.

aFor reviews of parameter estimates obtained by within-host modelling influenza studies, see [13, 14].
bWe use an upper bound that is several orders of magnitude higher than the highest measured ρ(t) value in the data,

in order to allow for the possibility that many infectious virions could become non-infectious during transmission from one
ferret to another.

cWe use a smaller lower bound for ch than that used for c, as we expect ch to be somewhat lower than previous estimates
of c, since those estimates implicitly include both ch and dinf .


