Reaction	Metabolite ^{&}	Enzyme*	Objective function^	Pathway	Reference			
Reactions occurring in the cytoplasm								
V1: Coenzyme A + Acetate + ATP => Acetyl-CoA +Pyrophosphate + AMP	Acetate, Acetyl-CoA	ACS2	Net ATP production (- 1), ATP consumption (1)		[1,2]			
V2: Oxaloacetate + Acetyl- CoA + H2O => Citrate + Coenzyme A	Oxaloacetate, Acetyl- CoA, Citrate	CIT2			[1,2,3,4]			
V3: Citrate + H2O => Isocitrate	Citrate, Isocitrate	ACO1			[1,2,3]			
V4: Isocitrate => Glyoxylate + Succinate	Isocitrate, Glyoxylate, Succinate	ICL1		Glyoxylate	[1,2,3]			
V5: Glyoxylate + Acetyl- CoA => Malate	Glyoxylate, Acetyl- CoA, Malate	MLS1		Glyoxylate	[1,2,3]			
V6: Malate + NAD => Oxaloacetate + NADH + H+	Malate, Oxaloacetate	MDH2	Net ATP production (3), ATP production (3)		[1,2,3]			
V7: Oxaloacetate + GTP => CO2 + Phosphoenolpyruvate + GDP	Oxaloacetate, Phosphoenolpyruvate	PCK1	Net ATP production (- 1), ATP consumption (1)	Gluconeogenesis	[2,5]			
V8: Phosphoenolpyruvate + H2O => 2- Phosphoglycerate	Phosphoenolpyruvate, 2-Phosphoglycerate	ENO1		Gluconeogenesis	[2,3]			
V9: 2-Phosphoglycerate => 3-Phosphoglycerate	2-Phosphoglycerate, 3-Phosphoglycerate	GPM1		Gluconeogenesis	[2,3]			
V10: 3-Phosphoglycerate + ATP => 1,3-BIP Glycerate + ADP	3-Phosphoglycerate, 1,3-BIP Glycerate	PGK1	Net ATP production (- 1), ATP consumption	Gluconeogenesis	[2,3,5]			

Table S1. Reactions in the yeast meiosis-specific metabolic network.

			(1)		
V11: 1,3-BIP Glycerate + NADH + H+ => Glyceraldehyde-3- Phosphate + phosphate + NAD	1,3-BIP Glycerate, Glyceraldehyde-3- Phosphate	TDH1 TDH2 TDH3 (or)	 (1) Net ATP production (- 3), ATP consumption (3) 	Gluconeogenesis	[2,3,6]
V12: Glyceraldehyde-3- Phosphate => Dihydroxy- acetone-phosphate	Glyceraldehyde-3- Phosphate,Dihydroxy- acetone-phosphate	TPI1		Gluconeogenesis	[2,3,6]
V13: Dihydroxy-Acetone- phosphate + Glyceraldehyde-3- phosphate => Fructose-1,6- bisphosphate	Dihydroxy-Acetone- phosphate, Glyceraldehyde-3- phosphate, Fructose- 1,6-bisphosphate	FBA1		Gluconeogenesis	[2,3,6]
V14: Fructose-1,6- bisphosphate + H2O => Fructose-6-phosphate + phosphate	Fructose-1,6- bisphosphate, Fructose- 6-phosphate	FBP1		Gluconeogenesis	[2,3,6]
V15: Fructose-6-phosphate => Glucose-6-phosphate	Fructose-6-phosphate, Glucose-6-phosphate	PGII		Gluconeogenesis	[2,3,6]
V16: Glucose-6-phosphate => Glucose-1-phosphate	Glucose-6-phosphate, Glucose-1-phosphate	PGM2		Gluconeogenesis	[2,3]
V17: UDP-D-glucose + Glucose-6-phosphate => UDP + α , α -trehalose 6- phosphate α , α -trehalose 6-phosphate +	Glucose-6-phosphate	TPS1 TPS2 TPS3 TLS1 (and)	Carbohydrate synthesis	Gluconeogenesis	[2,7,8]
H2O => Trehalose + phosphate					
V18: Glucose-1-phosphate + UTP => UDP-Glucose + 2 Pi	Glucose-1-phosphate	UGP1	Carbohydrate synthesis	Gluconeogenesis	[2,8,9,10]
Glycogen (n residues) + UDP- Glucose => Glycogen (n +1 residues) + UDP					
V19: a Glycogen + Phosphate => a Glycogen + Glucose-1-phosphate	Glucose-1-phosphate	GPH1	Carbohydrate breakdown	Glycogenolysis	[2,11,12]

V20: Glucose-1-phosphate => Glucose-6-phosphate	Glucose-1-phosphate, Glucose-6-phosphate	PGM2		Glycogenolysis	[1,2,3]
V21: Glucose-6-phosphate => Fructose-6-phosphate	Glucose-6-phosphate, Fructose-6-phosphate	PGII		Glycogenolysis	[2,3,6]
V22: Fructose-6-phosphate +ATP => Fructose-1,6- bisphosphate + ADP + H ⁺	Fructose-6-phosphate , Fructose-1,6- bisphosphate	PFK1 PFK2 (and)	Net ATP production (- 1), ATP consumption (1)	Glycogenolysis	[2,3,6]
V23: Fructose-1,6- bisphosphate => Dihydroxy-Acetone- phosphate + Glyceraldehyde-3- phosphate	Fructose-1,6- bisphosphate, Dihydroxy-Acetone- phosphate, Glyceraldehyde-3- phosphate	FBA1		Glycogenolysis	[2,3,6]
V24: Dihydroxy-Acetone- phosphate => Glyceraldehyde-3- phosphate	Dihydroxy-Acetone- phosphate, Glyceraldehyde-3- phosphate	TPII		Glycogenolysis	[2,3,6]
V25: Glyceraldehyde-3- phosphate + Phosphate + NAD => 1,3-BIP Glycerate + NADH + H ⁺	Glyceraldehyde-3- phosphate, 1,3-BIP Glycerate	TDH1 TDH2 TDH3 (or)	Net ATP production (3), ATP production (3)	Glycogenolysis	[2,3,6]
V26: 1,3-BIP Glycerate + ADP => 3- Phosphoglycerate + ATP	1,3-BIP Glycerate, 3-Phosphoglycerate	PGK1	Net ATP production (1), ATP production (1)	Glycogenolysis	[2,3,6]
V27: 3-Phosphoglycerate => 2-Phosphoglycerate	3-Phosphoglycerate, 2- Phosphoglycerate	GPM1		Glycogenolysis	[2,3,6]
V28: 2-Phosphoglycerate => Phosphoenolpyruvate + H2O	2-Phosphoglycerate, Phosphoenolpyruvate	ENO1		Glycogenolysis	[2,3,6]
V29: Phosphoenolpyruvate + ADP + H+ => Pyruvate + ATP	Phosphoenolpyruvate, Pyruvate	РҮК2	Net ATP production (1), ATP production (1)	Glycogenolysis	[2,3,6]

V30: HCO3- + Pyruvate + ATP => Phosphate + Oxaloacetate + ADP	Pyruvate, Oxaloacetate	PYC1 PYC2 (or)	Net ATP production (- 1), ATP consumption (1)	Glycogenolysis	[1,2]
V31: Fumarate + H2O => Malate	Fumarate, Malate	FUM1			[2,3,5]
V32: Isocitrate + NADP => Oxoglutarate + CO2 + NADPH	Isocitrate, Oxoglutarate	IDP2	Net ATP production (3), ATP production (3)	Glutamate	[2,3]
V33: Oxoglutarate + NH3 + NADPH + H+ => L- Glutamate + H2O + NADP	Oxoglutarate	GDH3	Net ATP production (- 3), ATP consumption (3), Glutamate synthesis	Glutamate	[2,3,8]
Reactions occurring in the	mitochondria				
V34: Coenzyme A [m] + NAD + Pyruvate [m] => Acetyl-CoA [m] + CO2 + NADH	Pyruvate [m], Acetyl-CoA [m]	PDB1 PDA1 (and)		Glycogenolysis	[2,3,6]
V35: Oxaloacetate [m] + Acetyl-CoA [m] + H2O =>	Oxaloacetate [m], Acetyl-CoA [m],	CIT1		TCA	[1,2,3,4]
Citrate [m]+ Coenzyme A [m]	Citrate [m]				
	Citrate [m] Citrate [m], Isocitrate [m]	ACO1		ТСА	[1,2,3]
[m] V36: Citrate [m] + H2O	Citrate [m],	ACO1 IDH1 IDH2 (and)	Net ATP production (3), ATP production (3)	TCA TCA	[1,2,3]

			production (3)		
V39: Succinyl-CoA [m] + GDP + Phosphate <=> Succinate [m] + Coenzyme A [m] + GTP	Succinyl-CoA [m], Succinate [m]	LSC1 LSC2 (and)	Net ATP production (1), ATP production (1)	TCA	[2,3,5]
V40: Succinate [m] + FAD => Fumarate [m] + FADH2	Succinate [m], Fumarate [m]	SDH1 SDH2 SDH3 SDH4 (and)	Net ATP production (2), ATP production (2)	TCA	[1,2,3]
V41: Fumarate [m] + H2O => Malate [m]	Fumarate [m], Malate [m]	FUM1		TCA	[1,2,3]
V42: Malate [m] + NAD => Oxaloacetate [m] + NADH + H ⁺	Malate [m], Oxaloacetate [m]	MDH1	Net ATP production (3), ATP production (3)	TCA	[1,2,3]
Transport reactions					
V43: Acetate [e] => Acetate	Acetate	ADY2	Acetate uptake		[2,13,14]
V44: Acetyl-CoA+ Carnitine => CoA + O- Acetylcarnitine	Acetyl-CoA, Acetyl-CoA [m]	CAT2 YAT1 YAT2 (avg)			[2,15]
O-Acetylcarnitine + CoA => Acetyl-CoA [m] + Carnitine ^{\$}					
V45: Oxaloacetate [m] => Oxaloacetate	Oxaloacetate [m], Oxaloacetate	OAC1			[2,16,17]
V46: Oxaloacetate => Oxaloacetate [m]	Oxaloacetate, Oxaloacetate [m]	OAC1			[2,16,17]
V47: Citrate => Citrate [m]	Citrate, Citrate [m]	CTP1			[2,18]
V48: Isocitrate [m] => Isocitrate	Isocitrate, Isocitrate [m]	CTP1			[2,18]
V49: Fumarate [m] + Succinate => Fumarate + Succinate [m] [#]	Fumarate [m], Succinate, Fumarate, Succinate [m]	SFC1			[2,17,19]

V50: Succinate + Phosphate [m] => Succinate [m] + Phosphate	Succinate [m], Succinate	DIC1			[2,17,19]
V51: Oxoglutarate [m] => Oxoglutarate	Oxoglutarate [m], Oxoglutarate	ODC1		Glutamate	[2,20]
V52: Pyruvate => Pyruvate [m]	Pyruvate, Pyruvate [m]	YIA6		Glycogenolysis	[2,21,22]
Reactions that produce nuc	leotides, amino acids, and	d lipids			
V53: Glucose-6-phosphate + NADP => D-6-phospho- glucono-δ-lactone + NADPH + H ⁺	Glucose-6-phosphate	ZWF1	Net ATP production (3), ATP production (3), Nucleotide synthesis	Nucleotide	[2,23,24]
V54: 3-Phosphoglycerate + NAD+ => 3- Phosphohydroxypyruvate + H + NADH	3-Phosphoglycerate	SER3 SER33 (or)	Net ATP production (3), ATP production (3), Amino acid synthesis	Amino acid	[2,23,24]
V55: Oxaloacetate + L- glutamate => 2- oxoglutarate + L-aspartate	Oxaloacetate	AAT2	Amino acid synthesis	Amino acid	[2,23,24]
V56: Pyruvate [m] + NADPH + H+ + glutamate => CO2 + NADP+ + H2O + Alpha-ketoglutarate + valine	Pyruvate [m]	ILV2 ILV6 (and)	Amino acid synthesis	Amino acid	[2,23,24]
V57: Oxaloacetate [m] + L- Glutamate => 2- Oxoglutarate + L-Aspartate	Oxaloacetate [m]	AAT1	Amino acid synthesis	Amino acid	[2,23,24]
V58: Phosphoenolpyruvate + Skm5p => 3Psme + phosphate	Phosphoenolpyruvate	ARO1	Amino acid synthesis	Amino acid	[2,23,24]
V59: BCCP-biotin-CO2 + Acetyl-CoA + ATP => Malonyl-CoA + BCCP-	Acetyl-CoA	ACC1	Net ATP production (- 1),	Lipid	[2,23,24]

biotin + phosphate + ADP			ATP consumption (1), Lipid synthesis		
V60: BCCP-biotin-CO2 + Acetyl-CoA [m]+ ATP => Malonyl-CoA + BCCP- biotin + phosphate + ADP	Acetyl-CoA [m]	HFA1	Net ATP production (- 1), ATP consumption (1), Lipid synthesis	Lipid	[2,23,24]
V61: Dihydroxy-Acetone- phosphate + NADH => Glycerol 3 P + NAD	Dihydroxy-Acetone- phosphate	GPD1	Net ATP production (- 3), ATP consumption (3), Lipid synthesis	Lipid	[2,23,24]
V62: Glucose-6-phosphate => Mi1p-D	Glucose-6-phosphate	INO1	Lipid synthesis	Lipid	[2,24]

[&] All metabolites are located in the cytoplasm except those labeled with [m] (mitochondrial metabolites) or [e] (extracellular metabolites).

* The "and" logic implies protein complexes or multi-subunit proteins where each enzyme is required to catalyze a reaction; the minimum expression value of all enzymes is used to define the upper bound of reaction constraints. The "or" logic implies isozymes where each enzyme can individually catalyze a reaction; the maximum expression value of all enzymes is used to define the upper bound of reaction constraints.

^ Each objective function is defined by C^TV , where V is a vector of reaction fluxes and C is a vector of zeros with a value of one at the position of reactions of interest, as stated in the column. The exceptions are three ATP objectives: positive numbers of yielded ATPs are coefficients for reactions participating in ATP production, positive numbers of used ATPs are coefficient for reactions participating in ATP consumption, and positive numbers of yielded ATPs and negative numbers of used ATPs are entered as coefficients for the objective function of net ATP production. The ATP coefficients are in parentheses immediately following the name of the ATP-related objective functions. Other energy molecules are converted to the ATP unit: 1NADH=3ATP, 1NADPH=3ATP, 1FADH2=2ATP, 1GTP=1ATP.

^{\$} This reaction represents three independent reactions catalyzed by three enzymes, thus the average expression value of the three enzymes is used to define the upper bound of reaction constraints [15].

[#] The flux of this reaction is set to 0 because *SFC1* encodes an antiporter, which transports cytoplasmic succinate into mitochondria in exchange for fumarate [19].

REFERENCES

- 1. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, et al. (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327: 1004-1007.
- 2. Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, et al. (2010) Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res 38: D433-436.
- 3. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38: D355-360.
- 4. Kim KS, Rosenkrantz MS, Guarente L (1986) Saccharomyces cerevisiae contains two functional citrate synthase genes. Mol Cell Biol 6: 1936-1942.
- 5. Blank LM, Kuepfer L, Sauer U (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6: R49.
- 6. Zhao S, Xu W, Jiang W, Yu W, Lin Y, et al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327: 1000-1004.
- 7. Vandercammen A, Francois J, Hers HG (1989) Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae. Eur J Biochem 182: 613-620.
- 8. Walker GM (1998) Yeast physiology and biotechnology. West Sussex: John Wiley & Sons Ltd.
- Cheng C, Mu J, Farkas I, Huang D, Goebl MG, et al. (1995) Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 15: 6632-6640.
- Daran JM, Dallies N, Thines-Sempoux D, Paquet V, Francois J (1995) Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. Eur J Biochem 233: 520-530.
- 11. Rath VL, Hwang PK, Fletterick RJ (1992) Purification and crystallization of glycogen phosphorylase from Saccharomyces cerevisiae. J Mol Biol 225: 1027-1034.
- 12. Hwang PK, Tugendreich S, Fletterick RJ (1989) Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol Cell Biol 9: 1659-1666.
- Casal M, Cardoso H, Leao C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142 (Pt 6): 1385-1390.
- 14. Paiva S, Devaux F, Barbosa S, Jacq C, Casal M (2004) Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21: 201-210.
- Swiegers JH, Dippenaar N, Pretorius IS, Bauer FF (2001) Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18: 585-595.
- 16. Palmieri L, Vozza A, Agrimi G, De Marco V, Runswick MJ, et al. (1999) Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem 274: 22184-22190.
- 17. Palmieri L, Lasorsa FM, Vozza A, Agrimi G, Fiermonte G, et al. (2000) Identification and functions of new transporters in yeast mitochondria. Biochim Biophys Acta 1459: 363-369.
- Kaplan RS, Mayor JA, Gremse DA, Wood DO (1995) High level expression and characterization of the mitochondrial citrate transport protein from the yeast Saccharomyces cerevisiae. J Biol Chem 270: 4108-4114.
- Palmieri L, Lasorsa FM, De Palma A, Palmieri F, Runswick MJ, et al. (1997) Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett 417: 114-118.
- 20. Palmieri L, Agrimi G, Runswick MJ, Fearnley IM, Palmieri F, et al. (2001) Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate. J Biol Chem 276: 1916-1922.

- 21. Hildyard JC, Halestrap AP (2003) Identification of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae. Biochem J 374: 607-611.
- 22. Sugden MC, Holness MJ (2003) Trials, tribulations and finally, a transporter: the identification of the mitochondrial pyruvate transporter. Biochem J 374: e1-2.
- 23. Cortassa S, Aon JC, Aon MA (1995) Fluxes of carbon, phosphorylation, and redox intermediates during growth of saccharomyces cerevisiae on different carbon sources. Biotechnol Bioeng 47: 193-208.
- 24. Nelson DL, Cox MM (2008) Lehninger Principles of Biochemistry: Freeman, W. H. & Company