Supporting Information

The roles of immune memory and aging in protective immunity and endogenous reactivation of tuberculosis

Giorgio Guzzetta^{1,2,*}, Denise Kirschner³

1 Department of Statistics and Mathematics Applied to Economics, University of Pisa, Italy

2 Fondazione Bruno Kessler, Trento, Italy

 ${\bf 3}$ Department of Microbiology and Immunology, University of Michigan Medical School, USA * E-mail: guzzetta@fbk.eu

S1 Equations and compartmental scheme of the reference model

Hereafter we report the Ordinary Differential Equations for the reference model of acute immune response [1] on which the present work builds, with each contributing term shortly defined on the right side. Additional information on biological support for the specific functional form of each can be found in the original paper [1]. A graphical summary of these dynamics for cellular populations are represented in Figure S1.

$$\frac{dM_R}{dt} = +Sr_m + \alpha_{4a}(M_A + w_2M_I) + Sr_{4b}\frac{F_\alpha}{F_\alpha + f_8I_{10} + s_{4b}} - k_2M_R\frac{BE}{BE + c_9} - k_3M_R\frac{BE + wBI + \beta F_\alpha}{BE + wBI + \beta F_\alpha + c_8}\frac{I_\gamma}{I_\gamma + f_1I_4 + s_1} - \nu_{MR}M_R$$

$$\frac{dM_I}{dt}$$

=

$$+k_{2}M_{R}\frac{BE}{BE+c_{9}} \\ -k_{17}M_{I}\frac{BI^{2}}{BI^{2}+N^{2}MI^{2}} \\ -k_{14a}M_{I}\frac{T_{C}+w_{3}T_{h1}}{T_{C}+w_{3}T_{I}+c_{4}} \\ -k_{14b}M_{I}\frac{T_{C}+w_{3}T_{I}}{F_{\kappa}+f_{9}I_{10}+s_{4b}} \\ -k_{52}M_{I}\frac{\frac{T_{C}T_{h1}}{T_{C}} \\ \frac{T_{C}T_{h1}+c_{T1}}{M_{I}}+w_{1}T_{h1}}{M_{I}+c_{52}} \\ -\nu_{MI}M_{I}$$

$$\frac{dM_A}{dt}$$

$$+k_3 M_R \frac{BE+wBI+\beta F_{\alpha}}{BE+wBI+\beta F_{\alpha}+c_8} \frac{I_{\gamma}}{I_{\gamma}+f_1 I_4+s_1} \\ -k_4 M_A \frac{I_{10}}{I_{10}+s_8} \\ -\nu_{MA} M_A$$

RESTING MACROPHAGES M_R

Background recruitment Macrophage recruitment TNF- α recruitment Infection (to M_I) Activation (to M_A) Natural death

INFECTED MACROPHAGES M_I

Infection (from M_R) Bursting T cell induced apoptosis TNF- α induced apoptosis Cytotoxic killing by T cells

Natural death

ACTIVATED MACROPHAGES M_A

Activation (from M_R) Deactivation Natural death

$$= +\alpha_{1a}(M_{A} + w_{2}M_{I}) + Sr_{1b} \frac{F_{\alpha}}{F_{\alpha} + f_{8}I_{10} + s_{4b2}} + \alpha_{2}T_{0} \frac{M_{A} + c_{15}}{M_{A} + c_{15}} - k_{6}I_{12}T_{0} \frac{I_{\gamma}}{I_{\gamma} + f_{1}I_{4} + f_{7}I_{10} + s_{1}} - k_{7}T_{0} \frac{I_{4}}{I_{4} + f_{2}I_{\gamma} + s_{2}} - \nu_{T0}T_{0}$$

$$\frac{dT_{h1}}{dt} = +$$

 $\frac{dT_0}{dt}$

$$\begin{aligned} &+ \alpha_{3a} (M_A + w_2 M_I) \\ &+ Sr_{3b} \frac{F_{\alpha}}{F_{\alpha} + f_8 I_{10} + s_{4b_1}} \\ &+ k_6 I_{12} T_0 \frac{I_{\gamma}}{I_{\gamma} + f_1 I_4 + f_7 I_{10} + s_1} \\ &- \nu_{Tg} \frac{I_{\gamma}}{I_{\gamma} + c} T_{h_1} M_A \\ &- \nu_{T1} T_{h_1} \end{aligned}$$

 $\frac{dT_{h2}}{dt} =$

$$+ \alpha_{3a2}(M_A + w_2M_I) + Sr_{3b2} \frac{F_{\alpha}}{F_{\alpha} + f_8I_{10} + s_{4b1}} + k_7T_0 \frac{I_4}{I_4 + f_2I_{\gamma} + s_2} - \nu_{T2}T_{h2}$$

$$\frac{dT_{80}}{dt} = +\alpha_{1a}(M_A + w_2M_I) + Sr_{1b}\frac{F_\alpha}{F_\alpha + f_8I_{10} + s_{4b2}} + \alpha_2T_{80}\frac{M_A}{M_A + c_{15}} - k_6I_{12}T_{80}\frac{I_\gamma}{I_\gamma + f_1I_4 + f_7I_{10} + s_1} - \nu_{T0}T_{80}$$

$$\frac{dT_C}{dt}$$

=

=

$$\begin{array}{l} +m\alpha_{3ac}(M_{A}+w_{2}M_{I}) \\ +mSr_{3bc}\frac{F_{\alpha}}{F_{\alpha}+f_{8}I_{10}+s_{4b1}} \\ +mk_{6}I_{12}T_{80}\frac{I_{\gamma}}{I_{\gamma}+f_{1}I_{4}+f_{7}I_{10}+s_{1}} \\ -\nu_{TC}g\frac{I_{\gamma}}{I_{\gamma}+c_{c}}T_{C}M_{A} \\ -\nu_{TC}T_{C}\end{array}$$

$$\frac{dT_8}{dt}$$

$$+ m\alpha_{3ac}(M_A + w_2M_I) + mSr_{3bc} \frac{F_{\alpha}}{F_{\alpha} + f_8I_{10} + s_{4b1}} + mk_6I_{12}T_{80} \frac{I_{\gamma}}{I_{\gamma} + f_1I_4 + f_7I_{10} + s_5} - \nu_{TC}g \frac{I_{\gamma}}{I_{\gamma} + c_c}T_8M_A - \nu_{TC}T_8$$

INDIFFERENTIATED CD4 T CELLS T_0

Macrophage recruitment TNF- α recruitment Proliferation Differentiation (to T_{h1}) Differentiation (to T_{h2}) Natural death

T-HELPER TYPE 1 CD4+ CELLS T_{h1}

Macrophage recruitment TNF- α recruitment Differentiation (from T_0) IFN- γ apoptosis Natural death

T-HELPER TYPE 2 CD4+ CELLS T_{h2}

Macrophage recruitment TNF- α recruitment Differentiation (from T_0) Natural death

INDIFFERENTIATED CD8 T CELLS T₈₀

Macrophage recruitment TNF- α recruitment Proliferation Differentiation (to T_C and T_8) Natural death

CD8+ T CELLS WITH CYTOTOXIC FUNCTION T_C

Macrophage recruitment TNF- α recruitment Differentiation (from T_{80}) IFN- γ apoptosis Natural death

CD8+ T CELLS T_8

Macrophages recruitment TNF- α recruitment Differentiation (from T_{80}) IFN- γ apoptosis Natural death

$$= +\alpha_{20}BE + k_{17}NM_{I}\frac{BI^{2}}{BI^{2}+N^{2}M_{I}^{2}} + k_{14a}NN_{fracc}M_{I}\frac{T_{C}+w_{3}T_{h1}}{T_{C}+w_{3}T_{h1}} + k_{14b}NN_{fraca}M_{I}\frac{T_{C}+w_{3}T_{h1}}{F_{\alpha}} + k_{2}\frac{N}{2}M_{R}\frac{BE}{BE+c_{9}} - k_{2}\frac{N}{2}M_{R}\frac{BE}{BE+c_{9}} - k_{15}M_{A}BE - k_{18}M_{R}BE - n_{E}BE$$

 $\frac{dBI}{dt}$

 $\frac{dBE}{dt}$

$$\begin{split} &+ \alpha_{19}BI (1 - \frac{BI^2}{BI^2 + N^2 M_I^2}) \\ &+ k_2 \frac{N}{2} M_R \frac{BE}{BE + c_9} \\ &- k_{17} N M_I \frac{BI^2}{BI^2 + N^2 M_I^2} \\ &- k_{14a} N M_I \frac{\frac{T_c + w_3 T_{h1}}{M_I + c_4}}{\frac{F_c}{F_a + f_9 I_{10} + s_{4b}}} \\ &- k_{14b} N M_I \frac{\frac{F_c}{F_a}}{\frac{F_c}{T_h I_1 + c_T I_1 + w_1 T_{h1}}} \\ &- k_{52} N M_I \frac{\frac{T_C \frac{T_{h1}}{T_h I_1 + c_T I_1} + w_1 T_{h1}}{M_I + c_{52}}}{\frac{T_c \frac{T_{h1}}{T_h I_1 + c_T I_1} + w_1 T_{h1}}{M_I + c_{52}}} \\ &- n_I B I \end{split}$$

EXTRACELLULAR BACTERIA BE

Bacterial replication Bursting of M_I (from BI)

T cell induced apoptosis of M_I (from BI)

TNF- α induced apoptosis of M_I (from BI) Internalization by M_R (to BI) Killing by macrophages Natural death

INTRACELLULAR BACTERIA BI

Bacterial replication Internalization by M_R (from BE) Bursting of M_I (to BE)

T cell induced apoptosis of M_I (partially to BE)

TNF- α induced apoptosis of M_I (partially to BE)

Cytotoxic killing of M_I by T cells

Natural death

$$\begin{array}{rcl} \frac{dI_{\gamma}}{dt} & = & \\ & + s_g \frac{BE + wBI}{BE + wBI + c_{10}} \frac{I_{12}}{I_{12} + s_7} \\ & + \alpha_5 a T_{h1} \frac{M_A}{M_A + c_{5a}} \\ & + \alpha_7 T_8 \sigma \frac{I_{12}}{I_{12} + f_4 I_{10} + s_4} \\ & + \alpha_7 T_{80} \frac{I_{12}}{I_{12} + f_4 I_{10} + s_4} \\ & + \alpha_5 b T_8 \frac{M_A}{M_A + c_{5b}} \\ & + \alpha_{5c} M_I \\ & - \nu_{I\gamma} I_{\gamma} \end{array}$$

$$\begin{array}{rcl} \frac{dI_{12}}{dt} & = & \\ & + s_{12} \frac{BE + wBI}{BE + wBI + c_{23}} \\ & + \alpha_8 M_A \frac{s}{s + I_{10}} \\ & - \nu_{I12} I_{12} \end{array}$$

$$\begin{array}{rcl} \frac{dI_{10}}{dt} & = & \\ & + \delta_7 M_I \frac{s_6}{I_{10} + f_6 I_{\gamma} + s_6} \\ & + \alpha_{16} T_{h1} \\ & + \alpha_{17} T_{h2} \\ & + \alpha_{18} \frac{T_C + T_8}{2m} \\ & - \nu_{I10} I_{10} \end{array}$$

$$\begin{array}{rcl} \frac{dI_4}{dt} & = & \\ & +\alpha_{11}T_0 \\ & +\alpha_{12}T_{h2} \\ & -\nu_{I4}I_4 \end{array}$$

$$\begin{array}{rcl} \frac{dF_{\alpha}}{dt} & = & \\ & & +\alpha_{30}M_{I} \\ & & +\alpha_{31}M_{A}\frac{I_{\gamma}+\beta_{2}(BE+wBI)}{I_{\gamma}+\beta_{2}(BE+wBI)+f_{1}I_{4}+s_{10}} \\ & & +\alpha_{32}T_{h1} \\ & & +\alpha_{33}\frac{T_{C}+T_{8}}{2m} \\ & & -\nu_{F\alpha}F_{\alpha} \end{array}$$

INTERFERON- γI_{γ}

Dendritic cells production T_{h1} production T_0 production T_{80} production T_8 production M_I production Natural decay

INTERLEUKIN-12 I_{12}

Dendritic cells production M_R production M_A production Natural decay

INTERLEUKIN-10 I_{10}

 M_I production T_{h1} production T_{h2} production CD8+ T cells production Natural decay

INTERLEUKIN-4 I_4

 T_0 production T_2 production Natural decay

TUMOR NECROSIS FACTOR- α F_{α} M_{I} production M_{A} production T_{h1} production CD8+ T cells production Natural decay

S2 Derivation of Equations for the Immune Memory Generation and Maintenance

For the dynamics of the circulating memory T cells compartment (T^{CM}) , we refer to a well established mathematical model of memory generation [2]. This model assumes that an initial amount of memory T cells is generated at the site of primary infection during the contraction phase of the immune response. This amount is slowly diluted during the lifetime of the individual as a consequence of several factors, including the reduction of thymic input of naive T cells and the competition of memory T cells specific for different antigens within the immune memory pool [2]. These dynamics are very complex (reviewed in [3, 4, 5]) and their modeling goes beyond the scope of this work. Therefore we assume the following equation for T^{CM} :

$$T_i^{CM}(t) = k_i T_i^{peak} e^{-d(t-t_1)}$$
(1)

where i = h1, C distinguishes CD4+ from CD8+ T cells, T^{peak} is the peak number of effector T cells during the acute phase of primary infection, k_i is the fraction of effector T cells which are initially transformed to circulating memory T cell and d is the rate at which the pool of circulating memory T cells wanes in time due to dilution, assumed constant and equal for both CD4+ and CD8+ T cells.

Dynamics of resident memory T cells can be modeled in terms of a balance between the natural death of T cells and the antigen-independent recruitment of T cells from the circulating memory compartment [6]:

$$\frac{dT_i^{RM}}{dt} = sr_i^{RM}T_i^{CM}(t) - \mu_i^{RM}T_i^{RM}(t)$$

Given that changes in the value of $T_i^{CM}(t)$ occur in the time scale of years or decades, whereas the dynamics of recruitment and death of T_i^{RM} are in the time scale of days [6], we can approximate $T_i^{CM}(t)$ as constant in time. Therefore, at equilibrium we will have:

$$T_{i}^{RM} = \frac{sr_{i}^{RM}}{\mu_{i}^{RM}} T_{i}^{CM}(t) = h_{i}^{RM} T_{i}^{CM}(t)$$
⁽²⁾

In other words, the amount of resident memory T cells at any time is approximated as a proportion h_i^{RM} of the concentration of circulating memory T cells and therefore this number wanes in time with the same rate d as the circulating memory compartment.

S3 Estimation of Parameter Values and Ranges

Most of the model parameters used throughout this work were estimated in previous published papers [7, 8, 9, 1] and are reported in Table S3.

In order to estimate the 8 parameter values and ranges for the additional equations reported in the previous section, human data from published studies on TB-specific memory lymphocytes are used where possible.

Estimation of k_i

Using Equation 1, k_i can be estimated for $t = t_1$ as

$$k_i = \frac{T_i^{CM}(t_1)}{T_i^{peak}}$$

Experimental studies [16] found about 20 (range: 5 to 250) central memory CD4+ T cells every 10^6 Peripheral Blood Mononuclear Cells (PBMC) in the blood of TB patients 6 months after successful treatment. In another study [17] about 300 (range: 200 to 700) central memory CD8+ T cells every 10^6 PBMC were detected in the blood of TB patients 4 months after treatment. We indicate these quantities as f_4^{CM} and f_8^{CM} respectively. Assuming that the peak of the acute phase of the immune response had been reached by the time at which f_i^{CM} were measured, we can obtain the concentration $T_i^{CM}(t_1)$ of memory T cells in the blood by simple multiplication of f_i^{CM} by the normal lymphocyte concentration in the blood [18], indicated with [PBMC]. Range and average values for T_i^{peak} were estimated by simulating a primary infection with 1,000 different parameter sets, chosen by Latin Hypercube Sampling [19] using uniform distributions within their range of variability.

Table S2 summarizes the process of estimation for k_i .

Estimation of h_{RMi}

 h_i^{RM} can be estimated from Equation 2 given measurements on resident memory T cells and estimates of circulating memory T cells (as already provided in Table S2) at $t = t_1$. In an experimental study on individuals with LTBI (ascertained by reactivity to Tuberculin Skin Test) [20], about 750,000 CD4+ and 350,000 CD8+ were found on average in the broncho-alveolar lavage (BAL) fluid of patients (volume $V_{BAL} = 30cc$); 7.4 to 14% of CD4+ (55,000 to 105,000) and about 0.8% of CD8+ (3,000) expressed an effector memory phenotype (production of IFN- γ and other inflammatory cytokines) after 2 days from a new intranasal challenge with Protein Purified Derivative (PPD) proteins. Therefore, these cells can be considered resident memory T cells: we term the corresponding quantities $t_{h1}^{RM}(t_1)$ and $t_C^{RM}(t_1)$ respectively. Since the site of infection considered in our model is a cube of alveolar parenchima of size $V_{site} = 2x2x2mm = 8 \cdot 10^{-3}$ cc, we can estimate the number $T_i^{RM}(t_1)$ of initial resident memory T cells at the site of a secondary infection as:

$$T_i^{RM}(t_1) = t_i^{RM}(t_1) \frac{V_{site}}{V_{BAL}}$$

and h_i^{RM} as $\frac{T_i^{RM}(t_1)}{T_i^{CM}(t_1)}$. These passages are summarized in Table S3.

Estimation of α_i^{CM}

The products $\alpha_i^{CM} T_i^{CM}$ represent the macrophage-dependent recruitment rate of circulating memory T cells, in analogy to parameters α_{3a} and α_{3ac} in the terms describing the macrophage-dependent recruitment of effector T cells in the reference model [1]. We assume that the recruitment of memory T cells from the circulating compartment can be κ times that of the macrophage-dependent term, with κ broadly chosen between 0.1 and 100. Table S4 reports a summary of the estimation process for the ranges of these parameters.

Estimation of ω and d

 ω is the rate of the exponential decay of CD4+ T cell recruitment occurring due to immunosenescence, while *d* is the rate at which memory T cells decay due to mechanisms of immune memory dilution [2]. Since we could not find any data to estimate these parameters, we choose a broad range of possible values in order to include all possible ranges of behavior. Values for both rates were chosen between 0.01 and 0.1 years⁻¹, in such a way that a host may lose 50% of his initial capacity (pool of circulating memory T cells for *d*, and CD4+ T cells recruitment rates for ω) in about 7 to 70 years. These numbers take as an approximate reference the time to equilibrium of a primary TB infection (up to 5 years) and the maximal lifetime of an individual (about 100 years). We choose for both rates a baseline value of 0.05 years⁻¹. This corresponds to a half-life of about 15 years, which is a good reference for both *d* (corresponding to the estimated duration of memory protection from Bacillus Calmette Guerin (BCG) vaccination [21]) and ω (age at which, according to [22], the risk of primary active disease is intermediate between children of age \leq 10 years and adults \geq 20 years).

S4 Endogenous reactivation

The immune response model with aging is able to reproduce endogenous reactivation in a broad region of the parameter space. Figure S2 displays the final outcome of infection for several different values of three model parameters: the rate of cytotoxic killing by activated CD8+ T cells, k_{52} , which selects the panel in Figure S2; the initial value of the TNF- α dependent recruitment rate of CD4+ cells, Sr_{3b}^0 (x-axis); and the aging parameter ω (y-axis). These parameters were selected because of their importance on model

outcome after a preliminary sensitivity analysis [1]. The outcome can be one of four possible types: a) active disease, displayed in dark red; b) LTBI followed by endogenous reactivation at some point of the host's life (orange); c) LTBI without reactivation (yellow); d) clearance of primary infection (turquoise).

References

- Sud D, Bigbee C, Flynn JAL, Kirschner DE (2006) Contribution of CD8 T Cells to control of Mycobacterium tuberculosis infection. The Journal of Immunology 176: 4296–4314.
- Antia R, Pilyugin SS, Ahmed R (1998) Models of immune memory: On the role of cross-reactive stimulation, competition, and homeostasis in maintaining immune memory. PNAS 95: 14926– 14931.
- 3. Nikolich-Zugich J (2008) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nature Reviews Immunology 8: 512–522.
- Miller RA (2005) T cells in aging mice: genetic, developmental, and biochemical analysis. Immunological Reviews 205: 94–103.
- 5. Buchholz VR, Neuenhahn M, Busch DH (2011) CD8+ T cell differentiation in the aging immune system: until the last clone standing. Current Opinion in Immunology 23: 1–6.
- Ely KH, Cookenham T, Roberts AD, Woodland DL (2006) Memory T Cell Populations in the Lung Airways Are Maintained by Continual Recruitment. The Journal of Immunology 176: 537–543.
- Wigginton JE, Kirschner DE (2001) A Model to Predict Cell-Mediated Immune Regulatory Mechanisms During Human Infection with Mycobacterium tuberculosis. The Journal of Immunology 166: 1951–1967.
- Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, et al. (2004) Dendritic Cell Trafficking and Antigen Presentation in the Human Immune Response to Mycobacterium tuberculosis. The Journal of Immunology 173: 494–506.
- Chang ST, Linderman JJ, Kirschner DE (2005) Multiple mechanisms allow Mycobacterium tuberculosis to continuously inhibit MHC class II-mediated antigen presentation by macrophages. PNAS 102: 4530–4535.
- Gilbertson B, Zhong J, Cheers C (1999) Anergy, IFN-γ production, and apoptosis in terminal infection of mice with Mycobacterium avium. J Immunol 163: 2073–2080.
- 11. Tsukaguchi K, de Lange B, Boom WH (1999) Differential regulation of IFN- γ , TNF- α , and IL-10 production by CD4(+) $\alpha\beta$ TCR+ T cells and V δ 2(+) $\gamma\delta$ T cells in response to monocytes infected with Mycobacterium tuberculosis-H37Ra. Cell Immunol 194: 12–20.
- Oddo M, Renno T, Attinger A, Bakker T, MacDonald HR, et al. (1998) Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol 160: 5448–5454.
- 13. Rojas M, Olivier M, Gros P, Barrera LF, Garcia LF (1999) TNF- α and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages. J Immunol 162: 6122–6131.
- 14. Li L, Sad S, Kagi D, Mosmann TR (1997) CD8Tc1 and Tc2 cells secrete distinct cytokine patterns in vitro and in vivo but induce similar inflammatory reactions. J Immunol 158: 4152–4161.

- 15. DAmico G, Frascaroli G, Bianchi G, Transidico P, Doni A, et al. (2000) Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat Immunol 1: 387–391.
- Millington KA, Innes JA, Hackforth S, Hinks TSC, Deeks JJ, et al. (2007) Dynamic Relationship between IFN-gamma and IL-2 Profile of Mycobacterium tuberculosis-Specific T Cells and Antigen Load. The Journal of Immunology 178: 5217–5226.
- Caccamo N, Guggino G, Meraviglia S, Gelsomino G, Di Carlo P, et al. (2009) Analysis of Mycobacterium tuberculosis-Specific CD8 TCells in Patients with Active Tuberculosis and in Individuals with Latent Infection. PLoS ONE 4: e5528.
- 18. McClatchey KD (2001) Clinical laboratory medicine. Lippincott Williams & Wilkins.
- 19. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A Methodology For Performing Global Uncertainty and Sensitivity Analysis in Systems Biology. Journal of Theoretical Biology 254: 178–196.
- Walrath J, Zukowski L, Krywiak A, Silver RF (2005) Resident Th1-Like Effector Memory Cells in Pulmonary Recall Responses to Mycobacterium tuberculosis. Am J Respir Cell Mol Biol 33: 48–55.
- 21. Styblo K, Meijer J (1976) Impact of BCG vaccination programmes in children and young adults on the tuberculosis problem. Tubercle.
- 22. Vynnycky E, Fine PEM (1997) The natural history of tuberculosis: the implications of agedependent risks of disease and the role of reinfection. Epidemiology and Infection 119: 183–201.

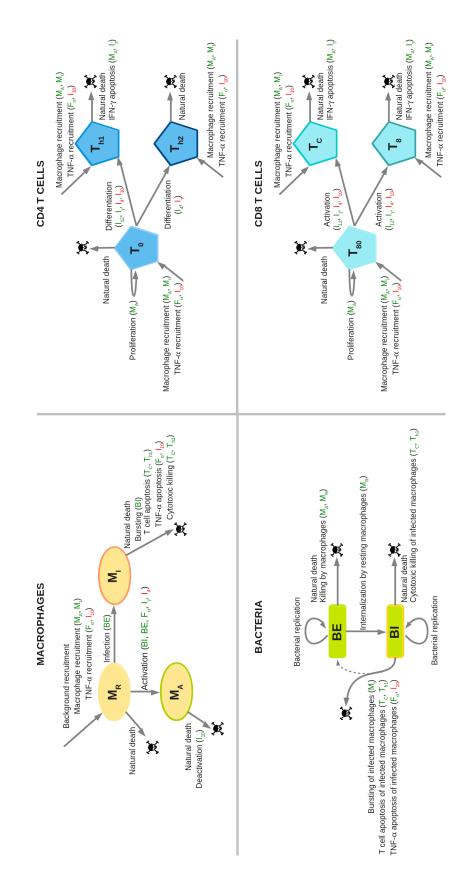


Figure S1: Graphical summary of the main interactions of the immune response to Mtb. Each arrow represents a change of state for each cellular population; text alongside arrows describes the terms contributing to each change of state; variables listed in parentheses after each term description represent cells and cytokines enhancing (green), or inhibiting (red) the given mechanism.

Parameter name	\mathbf{Symbol}	Ref.	Min	Base	\mathbf{Max}	Uni
M_R recruitment rate	Sr_m	[7]	600	650	700	M_R/c
Contribution of BI to M_R activation	w	[7]	0.01	0.1	0.5	-
Contribution of M_I to M_R recruitment	w_2	[1]	0.0005	0.05	0.5	-
Ratio adjustment I_{10}/F_{α} on M_R recruitment	f_8	[10]	1	60	100	-
Half saturation of F_{α} onr M_R recruitment	s_{4b}	[10]	100	200	556	pg/r
Half saturation of F_{α} on T_0 recruitment	s_{4b2}	[10]	100	200	500	pg/r
Half saturation of I_{10} on M_A deactivation	s_8	[7]	100	1000	2000	pg/r
Half saturation of BE on M_R infection	c_9	[7]	10^{5}	$5\cdot 10^6$	$3\cdot 10^7$	pg/r
Adjustment I_4/I_{γ}	f_1	[7]	2.9	205	410	-
Scaling factor of F_{α} for M_R activation	β	[1]	100	1000	10^{5}	1/p
M_R death rate	ν_{MR}	[7]	0.0033	0.0033	0.0033	1/da
Carrying capacity of M_I	N	[7]	40	75	100	-
Half saturation of T_{h1}/M_I ratio on M_I apoptosis	c_4	[7]	1	40	60	-
Cytotoxic killing of M_I	k_{52}	[1]	0.07	0.2	1	1/da
Half saturation of T_C on M_I killing	c_{52}	[1]	10	20	100	-
M_I death rate	ν_{MI}	[7]	0.0011	0.0011	0.0011	1/da
Accrophage recruitment of T_0	α_{1a}	[11]	0.001	0.003	0.01	1/d
fax growth rate of T_0	α_2	[7]	0.01	2	2.8	1/d
fax T_0 to T_{h1} rate	$\bar{k_6}$	[7]	0.005	0.005	0.005	 ml/(pg
fax T_0 to T_{h2} rate	k_7	[7]	0.02	0.03	0.07	ml/(pg
Talf saturation I_4	s_2	[7]	1	1.5	2	pg/
Percentage overlap between T_C and T_8	m	$\begin{bmatrix} 1 \end{bmatrix}$	0.5	0.7	1	-
Γ_{α} dependent recruitment of T_{h1}	Sr^0_{3b}	[11]	10^{4}	$5\cdot 10^4$	10^{5}	1/d
Γ_{α} dependent recruitment of T_{h2}	Sr_{3b2}^{50}	[11]	1000	10^{5}	10^{5}	1/d
alf saturation I_{γ} on T_{h1} apoptosis	C	[12]	1067	1120	1173	pg/
h_2 death rate	ν_{T2}	[7]	0.3	0.3	0.3	1/d
T_{α} dependent recruitment of T_C and T_8	Sr_{3bc}	[11]	10^{4}	$5 \cdot 10^4$	$8 \cdot 10^4$	1/d
In I_{γ} on T_C and T_8 apoptosis	C_c	[12]	530	550	600	pg/
γ production by dendritic cells (DCs)	s_g	[7]	1	500	1000	pg/(m)
In the saturation of I_{12} on I_{γ} production by DCs	s_7	[7]	5	60	100	pg/
In factor of M_A on I_γ production by T_{h1}	c_{5a}	[1]	5000	8000	20000	1/1
γ production by M_I	α_{5c}	[1]	0.02	0.05	0.066	pg/
γ production by T_0	α_{5c} α_{7}	[7]	0.02	0.05	0.066	pg/
Talf saturation of I_{12} on I_{γ}	s_4	[7]	50	75	100	pg/
γ decay rate	ν_{IG}	[7]	2.16	$\frac{10}{20}$	33.27	1/d
[alf saturation of Mtb on I_{12} production by M_R	c_{23}	[1]	1000	10^{5}	$5 \cdot 10^{6}$	1/1
Dendritic cell production of I_{12} production by I_{1R}	s_{12}	[1]	200	500	1000	pg/(m)
2 decay rate	ν_{I12}	[7]	1.1	1.1	1.1	1/d
$_{12}$ production by M_A	α_8	[7]	0.0012	0.005	0.012	pg/e
djustment I_{γ} on I_{10}	f_6	[7]	0.025	0.035	0.053	- 18/
T_{10} production by T_{h1}	α_{16}	[7]	$2 \cdot 10^{-4}$	$8 \cdot 10^{-4}$	10^{-3}	pg/
¹⁰ production by T_{C} and T_{8}	α_{16} α_{18}	[1]	$2 \cdot 10^{-4}$	$4 \cdot 10^{-3}$	$6 \cdot 10^{-2}$	pg/s
10 decay rate	ν_{I10}	[7]	3.7	5.5	7.23	1/c
T_{10} production by T_{h2}	α_{12}	[7]	0.001	0.0065	0.00912	pg/e
$_{\alpha}^{\prime}$ production by M_{I}	α_{12} α_{30}	[1]	0.0012	0.0005	0.0012	pg/(m)
caling factor of Mtb for F_{α} production by M_A	β_2	[1]	10^{-3}	10^{-3}	10^{-3}	1/1
T_{α} production by T_{h1}		[13]	10^{-5}	10^{-4}	$5 \cdot 10^{-3}$	pg/(m)
alf saturation of Mtb on F_{α} production by T_{h1}	$lpha_{32}$ c_T	[13]	1000	5000	10000	P8/ (III
BI growth rate	α_{19}	[7]	0.1	0.35	10000	1/d
raction BI released by T cell apoptosis of M_I	N_{fracc}	[7]	0.05	0.55	0.2	1/4
EE killing by M_A	k_{15}	[7]	$1.3 \cdot 10^{-9}$	$1.25 \cdot 10^{-6}$	$1.25 \cdot 10^{-5}$	
BL kining by M_A BI death rate			$5 \cdot 10^{-6}$	$5 \cdot 10^{-3}$	$5 \cdot 10^{-3}$	1/c
	n_I	[1]				1
facrophage recruitment of M_R	α_{4a}	[1]	0.01	0.03	0.05	1/d
fax contribution of T_{h1} to M_I apoptosis	w_3	[1]	0.1	0.4	0.8	
F_{α} dependent recruitment of M_R	Sr_{4b}	[1]	$2 \cdot 10^{3}$	$2 \cdot 10^5$	$5 \cdot 10^5$	1/d
atio adjustment F_{α}/I_{10}	f_9	[1]	1	60	100	

Parameter name	Symbol	Ref.	Min	Base	Max	Unit
Half saturation of F_{α} dependent T_{h1} recruitment	s_{4b1}	[1]	160	168	172	pg/ml
M_A deactivation by I_{10}	k_4	[7]	0.01	0.36	0.40	1/day
M_R infection rate	k_2	[7]	0.01	0.05	5	1/day
M_R activation rate	k_3	[7]	0.001	0.01	0.1	1/day
Half saturation of I_{γ} dependent M_R activation	s_1	[7]	0.1	10	30	pg/ml
Half saturation of BE and BI on M_R activation	c_8	[7]	10^{4}	10^{5}	$2.2\cdot 10^5$	1/ml
Max rate of M_I bursting	k_{17}	[7]	$8 \cdot 10^{-5}$	0.05	0.08	1/day
T cell induced apoptosis of M_I	k_{14a}	[1]	0.03	0.05	0.08	1/day
F_{α} induced apoptosis of M_I	k_{14b}	[1]	0.15	0.5	1.00	1/day
Max contribution of T_{h1} to cytotoxic killing	w_1	[1]	0.001	0.5	1.00	-
Half saturation of T_{h1} on cytotoxic killing	c_{T1}	[1]	1	50	10000	-
M_A death rate	$ u_{MA}$	[7]	0.07	0.07	0.07	1/day
$F_{/alpha}$ dependent T_0 recruitment	Sr_{1b}	[11]	10^{4}	10^{5}	10^{6}	1/day
Half saturation of M_A on I_{γ} production by T_{h1}	c_{15}	[7]	10^{4}	$5\cdot 10^4$	10^{5}	-
Effect of I_{10} on I_{γ} induced differentiation of T_0 to T_{h1}	f_7	[1]	1	5	5.00	-
Adjustment I_{γ}/I_4	f_2	[7]	1	1	1	-
T_0 death rate	ν_{T0}	[7]	0.0111	0.2	0.333	1/day
Macrophage recruitment of T_{h1}	α_{3a}^0	[11]	0.003	0.003	0.003	1/day
Macrophage recruitment of T_{h2}	α_{3a2}	[1]	10^{-3}	10^{-3}	10^{-3}	1/day
I_{γ} induced apoptosis of T_{h1}	ν_{Tg}	[12]	10^{-5}	10^{-4}	10^{-3}	1/day
T_{h1} death rate	ν_{T1}	[7]	0.3	0.3	0.30	1/day
Macrophage recruitment of T_C and T_8	α_{3ac}	[11]	0.001	0.0077	0.0145	1/day
I_{γ} induced apoptosis of T_c and T_8	ν_{TCg}	[12]	10^{-5}	10^{-4}	10^{-3}	1/day
T_C death rate	ν_{TC}	[1]	0.3	0.3	0.3	1/day
Half saturation of Mtb on I_{γ} production by DCs	c_{10}	[7]	100	5000	10^{5}	1/ml
I_{γ} production by T_{h1}	α_{5a}	[1]	0.01	0.5	1	pg/day
I_{γ} production by T_8	α_{5b}	[1]	0.01	0.5	1	pg/day
Half saturation of M_A on I_{γ} production by T_8	c_{5b}	[1]	10^4	$5 \cdot 10^4$	10^{5}	1/ml
Adjustment of I_{10}/I_{12} on I_{γ}	f_4	[7]	0.76	1.8	3.20	_
Half saturation of M_A on I_γ production by T_8	C_{5b}	[1]	10^4	$5 \cdot 10^{4}$	10^{5}	1/ml
I_{12} production by M_R	α_{23}	[1]	10^{-4}	10^{-3}	0.1	pg/ml
I_{12} production by M_A	α_{23} α_{8}	[7]	10^{-4}	0.003	0.01	pg/day
Half saturation of Mtb on I_{12} production by DCs	c_{230}	[1]	1000	10^{4}	10^{5}	1/ml
I_{10} effect on I_{12} production by M_A	c230 S	[1]	1	50	100	pg/ml
Half saturation of I_{10} self-inhibition in M_A	s_6	[7]	51	56	60	pg/ml
I_{10} production by M_A	δ_7	[1]	10^{-5}	10^{-2}	0.1	pg/ml
I_{10} production by II_{A} I_{10} production by T_{h2}		[7]	$2 \cdot 10^{-4}$	$6 \cdot 10^{-3}$	$6 \cdot 10^{-3}$	pg/day
I_{10} production by T_{h2} I_4 production by T_0	α_{17}	[7]	0.001	0.002	0.004	pg/day pg/day
I_4 production by I_0 I_4 decay rate	α_{11}	[7]	2.77	2.77	2.77	1/day
F_{α} production by M_A	ν_{I4}		0.003	0.01	0.015	pg/(ml d)
	α_{31}	[1]	50	80	100	
Half saturation of I_{γ} on F_{α} production by M_A	s_{10}	[1] [14]	$6.4 \cdot 10^{-5}$	10^{-4}	$100 \\ 1.1 \cdot 10^{-4}$	pg/ml pg/(ml da
F_{α} production by T_8	α_{33}	[14] [15]	1.112	1.112		
F_{α} decay rate BE growth rate	ν_{TNF}	[15]			1.112	1/day
BE growth rate Exaction BI released by TNE executed of M	α_{20}	[7]	0.05	0.05	0.05	
Fraction BI released by TNF apoptosis of M_I	N_{fraca}	[1]	0.4 $1.3 \cdot 10^{-9}$	$0.6 \\ 2 \cdot 10^{-9}$	$\begin{array}{c} 0.8 \\ 7\cdot 10^{-8} \end{array}$	- m1/d
BE killing by M_R	k_{18}	[7]	1.9 · 10	2 · 10 °	(·10 °	ml/day

Table S2: Estimation of the immunogenic potentials, k_i .								
Parameter name	\mathbf{Symbol}	Reference	Min	Max	Mean	Unit		
Proportion of T_{h1}^{CM} cells in blood	f_{h1}^{CM}	[16]	5	250	20	$\frac{cells}{10^6 PBMC}$		
Proportion of $T_C^{\overline{CM}}$ in blood	[17]	f_C^{CM}	200	700	300	cells		
Lymphocyte concentration in blood	[PBMC]	[18]	$1.5\cdot 10^6$	$5\cdot 10^6$	$3\cdot 10^6$	$\frac{10^6 PBMC}{PBMC}$		
Concentration of T_{h1}^{CM} in blood			7.5	1250	60	$\frac{ml}{\frac{cells}{ml}}$		
Concentration of T_C^{CM} in blood		$f_C^{CM} \cdot [PBMC]$	300	3500	900	$\frac{\frac{ml}{cells}}{ml}$		
Number of peak T_{h1} cells	T_{h1}^{peak}	[1]	30	20000	600	cells		
Number of peak T_C cells	T_C^{peak}	[1]	30	15000	600	cells		
Immunogenic potential for T_{h1}^{CM}	k_{h1}	$\frac{T_{h1}^{CM}(t_1)}{T_{h1}^{peak}}$	0.0625	0.25	0.1	ml^{-1}		
Immunogenic potential for T_{C}^{CM}	k_C	$\frac{T_C^{lh1}(t_1)}{T_C^{peak}}$	0.23	10	1.5	ml^{-1}		

Table S3: Estimation of the turnover rates of resident memory T cells, h_i^{RM}

Table 55. Estimation of the turnover rates of resident memory 1 cens, n_i								
Parameter name	\mathbf{Symbol}	Reference	Min	Max	Mean	Unit		
Volume of BAL	V_{BAL}	[20]	-	-	30	cc		
Volume of site of infection	V_{site}	[1]	-	-	$8\cdot 10^{-3}$	cc		
Initial number of T_{h1}^{RM} in BAL	$t_{h1}^{RM}(t_1)$	[20]	55,000	$105,\!000$	80,000	cells		
Initial number of $T_C^{\overline{R}M}$ in BAL	$t_C^{RM}(t_1)$	[20]	3000	3000	3000	cells		
Initial number of T_{h1}^{RM}	$T_{h1}^{RM}(t_1)$	$t_{h1}^{RM}(t_1) \frac{V_{site}}{V_{BAL}}$	15	28	21	cells		
Initial number of T_C^{RM}	$T_C^{RM}(t_1)$	$t_C^{RM}(t_1) \frac{V_{BAL}}{V_{BAL}}$	1	1	1	cells		
Concentration of initial T_{h1}^{CM}	$T_{h1}^{CM}(t_1)$	Table S2	7.5	1250	60	$\frac{\frac{cells}{ml}}{\frac{cells}{ml}}$		
Concentration of initial T_C^{CM}	$T_C^{CM}(t_1)$	Table S2	300	3500	900	$\frac{cells}{ml}$		
Turnover rate of memory CD4+	h_{h1}^{RM}	$\frac{T_{h1}^{RM}(t_1)}{T_{h1}^{CM}(t_1)} \\ T_{C}^{RM}(t_1)$	2.24 10-2	2	0.35	ml		
Turnover rate of memory CD8+	h_C^{RM}	$\frac{T_C^{RM}(t_1)}{T_C^{CM}(t_1)}$	2.9 10-4	3.3 10-3	1.1 10-3	ml		

Table S4: Estimation of the antigen dependent recruitment rates of circulating memory T cells upon secondary infection, α_i^{CM} .

Parameter name	\mathbf{Symbol}	Reference	Min	Max	Mean	Unit
Arbitrary proportional constant	κ	-	0.1	100	1	
Initial concentration of T_{h1}^{CM}	$T_{h1}^{CM}(t_1)$	Table S2	7.5	1250	60	$\frac{cells}{ml}$
Initial concentration of T_C^{CM}	$T_C^{CM}(t_1)$	Table S2	300	3500	900	$ \begin{bmatrix} \overline{ml} \\ \underline{cells} \\ \overline{ml} \\ cells / Mph \end{bmatrix} $
Rate of T_{h1} recruitment by macrophages	α_{3a}	[1]	0.003	0.003	0.003	day
Rate of T_C recruitment by macrophages	α_{3ac}	[1]	0.003	0.003	0.003	$\frac{cells/Mph}{day}$
T_{h1}^{CM} recruitment rate	α_{h1}^{CM}	$\kappa \frac{\alpha_{3a}}{T_{b1}^{CM}(t_1)}$	$2.4\cdot 10^{-7}$	0.04	$5\cdot 10^{-5}$	$\frac{ml/Mph}{day}$
T_C^{CM}	α_C^{CM}	$\kappa \frac{\alpha_{3ac}}{T_C^{CM}(t_1)}$	$8.6 \cdot 10^{-8}$	10^{-3}	$3.3\cdot 10^{-6}$	$\frac{ml/Mph}{day}$

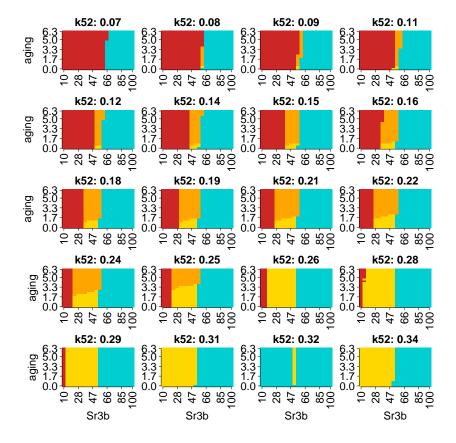


Figure S2: **Parameter regions for reactivation.** All simulations are performed assuming an initial inoculum of N = 25 bacteria, the age at first infection $t_1 = 0$ for simplicity, and all other model parameters as in Table S3 of this text.