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1 R0 and the Next Generation Operator

The basic reproductive number, R0, is the average number of secondary cases produced by a typical

infected individual in a completely susceptible population. We proceed to compute R0 using the Next

Generation Operator based on the approach in [1]. Considering only the infective states {It, Iu, Ir}, we

obtain the reduced system

dIi
dt

= Fi − Vi, i ∈ {t, u, r} (1)

where

F =


S(Itmβu + Iuβu)ρ(1− c)

S(Itmβu + Iuβu)(1− ρ)

SIrfβu + S(Itmβu + Iuβu)cρ

 and V =


It(τ + γu + µ)

Iu(γu + µ)

Ir(γr + µ)

 (2)

The Jacobian matrices of both F and V , evaluated at the disease free equilibrium (DFE)

X0 = (S∗ = 1, I∗t = 0, I∗u = 0, I∗r = 0), (3)

are
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DF (X0) =


mβuρ(1− c) βuρ(1− c) 0

mβu(1− ρ) βu(1− ρ) 0

mβucρ βucρ fβu

 (4)

and

DV (X0) =


τ + γu + µ 0 0

0 γu + µ 0

0 0 γr + µ

 (5)

The Next Generator Operator (NGO) matrix is defined as M = DF ×DV −1. Using the inverse

DV −1 =


1

τ+γu+µ
0 0

0 1
γu+µ

0

0 0 1
γr+µ

 (6)

we obtain

M =


mβuρ(1−c)
(τ+γu+µ)

βuρ(1−c)
(γu+µ)

0

mβu(1−ρ)
(τ+γu+µ)

βu(1−ρ)
(γu+µ)

, 0

mβucρ
(τ+γu+µ)

βucρ)
(γu+µ)

fβu

γr+µ

 (7)

The eigenvalues of M are

λ1 = Rw0 = βu

{
mρ(1− c)
γu + τ + µ

+
(1− ρ)

γu + µ

}
, (8)

λ2 = Rr0 = βu
φ

γr + µ
, (9)

λ3 = 0. (10)

where Rw0 and Rr0 are the reproductive number of the wild-type and resistant strains, respectively.

The condition Rw0 = Rr0 yields

ρ∗ =
[(γr + µ) − φ(γu + µ)](γu+µ+τ)

(γr + µ)[(γu+µ+τ) −m(1 − c)(γu + µ)]
(11)
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2 Analogous Model

In the original model it is assumed that treatment and de novo resistance happen immediately after

infection. Here we present a model that features stage progressions (treatment and de novo resistance

occur at certain rates rather than instantaneously). Susceptible hosts, S, enter the population at a per-

capita rate µ. The per-capita death rate of all classes is also µ. Since the population is kept constant,

we assume N = 1. Susceptible individuals can be infected by either a wild-type or drug-resistant strains,

progressing into the Iu and Ir classes, respectively. Those infected with the wild-type strain recover at

rate γu, or get treated at rate α, entering the treated It class. From this class, individuals recover at rate

γu + τ , or develop de novo resistance at rate ν. Those infected with the resistant strain recover at rate

γr. The pathogen induces sterilizing immunity.

The ordinary differential equation (ODE) model describing the above dynamics is (see Figure S1)

dS

dt
= µ− (θw + θr + µ)S

dIu
dt

= θwS − (γu + µ+ α)Iu

dIt
dt

= αIu − (γu + τ + µ+ ν)It

dIr
dt

= θrS + νIt − (γr + µ)Ir

dR

dt
= (γu + τ)It + γuIu + γrIr − µR

with forces of infection θw=βuIu +mβuIt and θr=φβuIr, where φ = βr/βu and m = βt/βu.

Therefore, in this model 1/α represents the average amount of time a wild-type infected, that will

be treated, spends untreated, while 1/ν represents the average amount of time it takes for those treated

that will develop de novo resistance to actually become resistant to treatment. Moreover, the fraction of

wild-type infections treated, ρ, and the fraction of those treated that develop de novo resistance, c, are
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Figure S1. Compartmental diagram for the analogous model.

given by

ρ =
α

α+ γu + µ
and c =

ν

ν + γu + τ + µ
.

Notice that we have intentionally used the same terminology as in the manuscript.

In this model, the basic reproduction numbers are given by

Rw0 = βu

{
1

α+ γu + µ
+m

(
α

α+ γu + µ

)(
1

ν + γu + τ + µ

)}
,

Rr0 = βu
φ

γr + µ
(12)

where Rw0 and Rr0 are the reproductive number of the wild-type and resistant strains, respectively. Note

that 1− ρ = (γu + µ)/(α+ γu + µ), and 1− c = (γu + τ + µ)/(ν + γu + τ + µ). Thus, we can rewrite the

reproduction numbers in (12) as

Rw0 = βu

{
1− ρ
γu + µ

+mρ
1− c

γu + τ + µ

}
,

Rr0 = βu
φ

γr + µ

which coincide with the reproduction numbers presented in the manuscript, i.e., expressions (8) and (9).

To compare the temporal dynamics and final states of the original model (the one in the main text)

and the model with stage progression, Figure S2 and Figure S3 show numerical integrations with the

similar parameters (we have used a higher birth/death rate to increase the endemic equilibria and better
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convey our message) as in the original model for the endemic and single epidemic case, respectively. The

qualitative behavior is quite similar. Note that the endemic equilibria and the total final sizes are the

same in both models, which is expected since the two models have equal reproduction numbers. Thus,

the two models are qualitatively analogous.
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Figure S2. Comparison of the two models in the endemic case. Although their temporal dynamics are
not equivalent, their endemic equilibria coincide.
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Figure S3. Comparison of the two models in the single epidemic case. The original model over
estimates the resistance prevalence in comparison with the model with stage progression. The total
final sizes coincide.

3 Stability of Fixed Points

Linearizing the system around the steady states, we found the respective eigenvalues λi, i = 1, 2, 3, 4.

The sign of their real part determines the stability of the steady states [2].
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3.1 DFE

For the DFE

λ11 = −µ (13)

λ12 = (γr + µ)(Rr0 − 1) (14)

λ13 = −(γu + µ)− 1

2
[τ − (1− ρ)βu − (1− c)ρβt]−

√
1

4
[τ − (1− c)ρβt − (1− ρ)βu]2 + (1− ρ)τβu (15)

λ14 = −(γu + µ)− 1

2
[τ − (1− ρ)βu − (1− c)ρβt] +

√
1

4
[τ − (1− c)ρβt − (1− ρ)βu]2 + (1− ρ)τβu (16)

The first eigenvalue is always negative; λ12 < 0 if Rr0 < 1.

λ13 and λ14 have zero imaginary part if the term inside the square root is positive. The stability of

the DFE depends on the respective signs. We prove below that λ13 < 0 and λ14 < 0, if Rw0 < 1. Thus, as

expected, the DFE is stable if Rw0 < 1 and Rr0 < 1.

The stability of the DFE depends on their respective signs. Lets momentarily define

A :=
1

2
[τ − (1− ρ)βu − (1− c)ρβt] (17)

Then

λ13 = −(γu + µ)−A−
√
A2 + (1− ρ)τβu (18)

λ14 = −(γu + µ)−A+
√
A2 + (1− ρ)τβu (19)

Therefore, λ13 < 0 and λ14 < 0 simultaneously if

(γu + µ) +A >
√
A2 + (1− ρ)τβu

=⇒ [(γu + µ) +A]2 > A2 + (1− ρ)τβu

=⇒ (γu + µ)2 + 2A(γu + µ) > (1− ρ)τβu

=⇒ (γu + µ) + 2A > τ
(1− ρ)βu
γu + µ
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Substituting A and defining Ru0 =
(1− ρ)βu
γu + µ

and Rt0 =
ρ(1− c)βt
γu + τ + µ

, with Rw0 = Rt0 +Ru0 , we get

(γu + µ) + τ − (γu + µ)Ru0 − (γu + τ + µ)Rt0 > τ(Rw0 −Rt0)

=⇒ (γu + µ) + τ − (γu + µ)Ru0 − (γu + µ)Rt0 > τRw0

=⇒ (γu + µ) + τ − (γu + µ)Rw0 > τRw0

=⇒ γu + µ+ τ > (τ + γu + µ)Rw0

=⇒ 1 > Rw0

3.2 RFP

For the RFP

λ21 = −µ
2
Rr0 −

√
µ(γr + µ)

(
1−Rr0 +

µ

4(γr + µ)
(Rr0)2

)
(20)

λ22 = −µ
2
Rr0 +

√
µ(γr + µ)

(
1−Rr0 +

µ

4(γr + µ)
(Rr0)2

)
(21)

λ32 = − 1

2Rr0

{
(2γu + τ + 2µ)Rr0 − (γu + τ + µ)Rt0 − (γu + µ)Ru0 (22)

+ {
√

[τRr0 − (γu + τ + µ)Rt0]2 + 2(γu + µ)Ru0 (τRr0 + (γu + τ + µ)Rt0) + (γu + µ)2(Ru0 )2
}

(23)

λ42 = − 1

2Rr0

{
(2γu + τ + 2µ)Rr0 − (γu + τ + µ)Rt0 − (γu + µ)Ru0 (24)

−
√

[τRr0 − (γu + τ + µ)Rt0]2 + 2(γu + µ)Ru0 (τRr0 + (γu + τ + µ)Rt0) + (γu + µ)2(Ru0 )2
}

(25)

For λ21 and λ22 to be a pair of conjugate complex numbers with negative real part, it is necessary that

1−Rr0 +
µ

4(µ+ γ)
(Rr0)2 < 0. (26)
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Solving for Rr0 gives the condition

2(γ + µ)

µ

(
1−

√
1− µ

γ + µ

)
< Rr0 <

2(γ + µ)

µ

(
1 +

√
1− µ

γ + µ

)
. (27)

If (27) holds, then the RFP is represented by a stable spiral when projected in the (It, Iu) plane.

Typically µ � 1, thus the conditions above can be approximated to 0 < Rr0 <
4(γ+µ)
µ � 1. This range

usually encompasses the range of plausible values of Rr0. Thus, λ21 and λ22 will most likely be a pair of

conjugate complex numbers with negative real part.

The term inside the square root in the conjugate pair λ32, λ
4
2 is always positive, thus λ32, λ

4
2 ∈ R. Hence,

the stability of the RFP depends on their signs. We now prove that λ32 < 0 and λ42 < 0 simultaneously if

Rr0 > Rw0 . First note that λ32 < 0 and λ42 < 0 simultaneously if

[
(2γu + τ + 2µ)Rr0 − (γu + τ + µ)Rt0 − (γu + µ)Ru0

]
>
√

[τRr0 − (γu + τ + µ)Rt0]2 + 2(γu + µ)Ru0 (τRr0 + (γu + τ + µ)Rt0) + (γu + µ)2(Ru0 )2.

Squaring both sides

[
(2γu + τ + 2µ)Rr0 − (γu + τ + µ)Rt0 − (γu + µ)Ru0

]2
> [τRr0 − (γu + τ + µ)Rt0]2 + 2(γu + µ)Ru0 (τRr0 + (γu + τ + µ)Rt0) + (γu + µ)2(Ru0 )2.

Expanding the left-hand-side yields

[(2γu + τ + 2µ)Rr0]2 + [(γu + τ + µ)Rt0]2 + [(γu + µ)Ru0 ]2−

−2
{

[(2γu + τ + 2µ)Rr0(γu + τ + µ)Rt0] + [(2γu + τ + 2µ)Rr0(γu + µ)Ru0 ]− [(γu + τ + µ)Rt0(γu + µ)Ru0 ]
}
>

> [τRr0 − (γu + τ + µ)Rt0]2 + 2(γu + µ)Ru0 [τRr0 + (γu + τ + µ)Rt0] + [(γu + µ)Ru0 ]2.

Canceling [(γu + µ)Ru0 ]2 and expanding [τRr0 − (γu + τ + µ)Rt0]2 yields

[(2γu + τ + 2µ)Rr0]2 + [(γu + τ + µ)Rt0]2−
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−2
{

[(2γu + τ + 2µ)Rr0(γu + τ + µ)Rt0] + [(2γu + τ + 2µ)Rr0(γu + µ)Ru0 ]− [(γu + τ + µ)Rt0(γu + µ)Ru0 ]
}
>

> [τRr0]2 + [(γu + τ + µ)Rt0]2 − 2[(γu + τ + µ)Rt0][τRr0] + 2(γu + µ)Ru0 τR
r
0 + 2(γu + µ)Ru0 (γu + τ + µ)Rt0].

Canceling [(γu + τ + µ)Rt0]2 one obtains

[(2γu + τ + 2µ)Rr0]2−

−2
{

[(2γu + τ + 2µ)Rr0(γu + τ + µ)Rt0] + [(2γu + τ + 2µ)Rr0(γu + µ)Ru0 ]− [(γu + τ + µ)Rt0(γu + µ)Ru0 ]
}
>

> [τRr0]2 − 2[(γu + τ + µ)Rt0][τRr0] + 2(γu + µ)Ru0 τR
r
0 + 2(γu + µ)Ru0 (γu + τ + µ)Rt0].

Canceling 2[(γu + τ + µ)Rt0(γu + µ)Ru0 ] yields

[(2γu + τ + 2µ)Rr0]2 − 2
{

[(2γu + τ + 2µ)Rr0(γu + τ + µ)Rt0] + [(2γu + τ + 2µ)Rr0(γu + µ)Ru0 ]
}
>

> [τRr0]2 − 2[(γu + τ + µ)Rt0][τRr0] + 2(γu + µ)Ru0 τR
r
0.

Dividing both sides by Rr0 renders

Rr0[(2γu + τ + 2µ)]2 − 2[(2γu + τ + 2µ)(γu + τ + µ)Rt0]− 2[(2γu + τ + 2µ)(γu + µ)Ru0 ] >

> τ2Rr0 − 2[(γu + τ + µ)Rt0]τ + 2(γu + µ)Ru0 τ.

Factoring R0 terms we get

−2[(2γu + τ + 2µ)(γu + τ + µ)− (γu + τ + µ)τ ]Rt0 − 2[(2γu + τ + 2µ)(γu + µ) + τ(γu + µ)]Ru0 >

> [τ2 − [(2γu + τ + 2µ)]2]Rr0.

Expanding and canceling τ terms yields

−2[(2γu + 2µ)(γu + τ + µ)]Rt0 − 2[(2γu + 2τ + 2µ)(γu + µ)]Ru0 > [−(2γu + 2µ)2 − 2(2γu + 2µ)τ ]Rr0.
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Dividing both sides by 4 yields

−[(γu + µ)(γu + τ + µ)]Rt0 − [(γu + τ + µ)(γu + µ)]Ru0 > [−(γu + µ)2 − (γu + µ)τ ]Rr0.

Dividing both sides by (γu + µ) renders

(γu + τ + µ)Rt0 + (γu + µ+ τ)Ru0 < (γu + µ+ τ)Rr0.

Dividing both sides by (γu + τ + µ) we finally get

Rw0 < Rr0.

3.3 Effect of Varying ρ and φ: Phase Planes

In the figures below the following parameters have been fixed: c = 1
500 , µ = 4.57 · 10−5, γ = 1

5 , βu = 1
2 ,

m = 0.34. The death rate expresses a mean life expectancy of 60 years. βu and γ yield R0 = 2.5.
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3.4 Summary of the Stability Behavior of the System

Figure S8 summarizes the stability behavior of the system as a function of Rw0 and Rr0, and shows which

key parameters need to change to shift from one stability region to another.

Going clockwise, starting in the top-left corner with high ρ and low φ, the DFE is stable. As ρ

decreases, Rw0 surpasses the threshold of 1 and the system enters the Coexistence 2FP region (CFP

stable, DFE unstable). It is easy to show that if Rw0 =1, then DFE = CFP. Since the FPs also exchange

their stability at this point, this represents a transcritical bifurcation [2]. Incrementing φ above φ1, Rr0

crosses the threshold of 1, and shifts the system to the 3FP region (CFP stable, DFE unstable, RFP

unstable). Further increasing φ (increasing Rr0 beyond Rw0 ) or increasing ρ(> ρ∗) (reducing Rw0 bellow

Rr0), the system enters the Resistance region (DFE unstable, RFP stable). If Rw0 =Rr0, then CFP=RFP,

which implies that the CFP exits the BS area crossing through the RFP. Also here, the FPs exchange

stability, featuring a transcritical bifurcation. If ρ > ρ1 and φ < φ1, the system goes from the Resistant

to the DFE region. If Rr0 = 1, then DFE = RFP, and they exchange stability, displaying once more a

transcritical bifurcation.



12

 DFE 

Resistance 

(3FP) 

   Coexistence 

 Relative Transmissibility ( )       

  
  
  
  
  
 T

re
a

tm
e

n
t 
F

ra
c
ti
o

n
  
  
  
  
 

0 

1 

(2FP) 

1

1

*

R
0

r

 1 

DFE 

    Resistance 

Coexistence  

1 

R
0

w

NO DISEASE 
DFE (stable) 

COEXISTENCE 
CFP (stable) 

DFE (unstable) 

RESISTANCE 
RFP (stable) 

DFE (unstable) 

COEXISTENCE 
CFP (stable) 

RFP (unstable) 
DFE (unstable) 

Transcritical  

Bifurcation 

 

(via , , or m) 

Transcritical 

Bifurcation 

(via ) 

(via , , m, or ) 

 

Transcritical 

 Bifurcation 

Transcritical 

Bifurcation 

(via ) 

R
0

w
> R

0

r
>1

R
0

w
>1> R

0

r
R
0

w
<1,R

0

r
<1

R
0

r
> R

0

w
,R

0

r
>1
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3.5 Prevalence as a Function of ρ and φ

To have a broader idea of what effect the resistant strain fitness has on the overall disease prevalence,

Figure S9 shows a plot of the prevalence as a function of ρ and φ. For comparative purposes, the red-

dashed line coincides with the red-dashed line in Figure S8 (right), and the red and black solid line

represent the steady state trajectories in the Figure 4 in the main text. For fixed φ, increasing ρ has an

effect on the prevalence only up to the red-dashed line (ρ = ρ∗). Conversely, for fixed ρ, increasing φ

has no effect on prevalence if Rw0 (ρ) > Rr0(φ). After that threshold (red-dashed line), increasing φ also

increases prevalence of the resistant strain.

4 Finding the Optimal Treatment Regimes

The FP that dictate endemic levels of disease are :

RFP:

S2 =
1

Rr0
, I2t = 0, I2u = 0, I2r =

µ

φβu
(Rr0 − 1) (28)
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Figure S9. Prevalence as a function of ρ and φ with c = 1/500.

CFP:

S3 =
1

Rw0
, I3t =

(1− c)ρµ
(γu + τ + µ)

(
1− Rr0

Rw0

)
Ψ, I3u =

(1− ρ)µ

(γu + µ)

(
1− Rr0

Rw0

)
Ψ, I3r = cρ

µ

(γr + µ)
Ψ

(29)

where

Ψ :=
Rw0 − 1

Rw0 − (1− cρ)Rr0
.

Clearly, the RFP does not depend on the treatment level ρ, while CFP does.

4.1 Overall fitness and the role of c

In this analysis, lets assume for simplicity that τ = 0 and γu = γr, yielding σi = σ, i ∈ {u, t, r}. From

Eq. (4) in the model, we get for the resistant strain

dIr
dt

= θrS + θwSρc− σIr =

(
θr
Irσ

S +
θwρc

Irσ
S − 1

)
σIr =

(
Rr0S +

θwρc

Irσ
S − 1

)
σIr

Using the approximation

dIr
dt
≈ In+1

r − Inr
1/σ

,
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where 1/σ is the expected duration of an “epidemic generation” and n indexes the generations, renders

In+1
r ≈

(
Rr0S +

θwρc

Irσ
S

)
Inr .

Assuming a susceptible-rich population, we can approximate S ≈ 1, finally yielding

In+1
r ≈

(
Rr0 +

θwρc

Inr σ

)
Inr = Rr0I

n
r +

θwρc

σ
(30)

Proceeding similarly for the wild-type strain we get

dIt
dt

= θwSρ(1− c)− σIt =⇒ In+1
t ≈

(
ρ(1− c) θw

Int σ

)
Int

dIu
dt

= θwS(1− ρ)− σIu =⇒ In+1
u ≈

(
(1− ρ)

θw
Inuσ

)
Inu

Let In+1
w = Inu + Int , then

In+1
w ≈

(
ρ(1− c)θw

σ

)
+

(
(1− ρ)

θw
σ

)
=

(
(1− ρc) θw

Inwσ

)
Inw

=

(
(1− ρc)βuI

n
u +mβuI

n
t

(Inu + Int )σ

)
Inw

= (1− ρc)
(
βui

n
u +mβui

n
t

σ

)
Inw

where inx is the fraction of the wild type infected that did not develop resistance and ended up in class

x ∈ {u, t} in generation n. It follows then that inu =
(1− ρ)

1− ρc
and int =

ρ(1− c)
1− ρc

. Thus

In+1
w ≈ (1− ρc)

(
βu

(1−ρ)
1−ρc +mβu

ρ(1−c)
1−ρc

σ

)
Inw = Rw0 I

n
w (31)

Since (1− ρc) θw
Inwσ

= Rw0 , from Eq. (30) we then get

In+1
r ≈ Rr0Inr +

ρc

1− ρc
Rw0 I

n
w (32)

The absolute fitness of strain k ∈ {w, r} can be defined as Fk =
In+1
k

Ink
, that is, how many new infections
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(“offspring”) did each infected contribute to the next generation on average. For the wild-type strain

this definition holds. However, for the resistant strain the de novo resistant cases are not “produced” by

resistant strain infections, so the definition does not hold for the de novo contribution term. Instead, the

de novo term should be divided by Inw. Then, from Eq. (31) and Eq. (32) we obtain

Fw = Rw0 H(ρ∗ − ρ) and Fr = Rr0 +
ρc

1− ρc
Rw0 H(ρ∗ − ρ).

where H(x) is the Heaviside step function: H(x) = 1 if x > 0, and H(x) = 0 otherwise. It is used to

signify that if ρ > ρ∗, there are no more wild-type cases, and therefore, no de novo cases either. The

de novo term can be interpreted as the number of new de novo infections that each wild-type infected

legated to the next generation, in average. Note that as c→ 0, then Fw → Rw0 and Fr → Rr0.

4.2 Exploring the monotonicity of I3r (ρ) in (0, ρ∗)

From the expression of I3r it is clear that

∂I3r
∂ρ

=
cµ

γr + µ
Ψ +

cµρ

γr + µ

∂Ψ

∂ρ
=

cµ

γr + µ

(
Ψ + ρ

∂Ψ

∂ρ

)

Thus, for
∂I3r
∂ρ

> 0 we must show that Ψ + ρ
∂Ψ

∂ρ
> 0, where

Ψ + ρ
∂Ψ

∂ρ
=

Rw0 − 1

Rw0 − (1− cρ)Rr0
+ ρ

∂Rw0
∂ρ

(1− (1− cρ)Rr0)− (Rw0 − 1)cRr0

(Rw0 − (1− cρ)Rr0)
2

=

(Rw0 − 1)(Rw0 − (1− cρ)Rr0) + ρ
∂Rw0
∂ρ

(1− (1− cρ)Rr0)− (Rw0 − 1)cρRr0

(Rw0 − (1− cρ)Rr0)2
(33)
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Since the denominator of this last expression is always positive, we focus only on the sign of the numerator

(Rw0 − 1)(Rw0 − (1− cρ)Rr0) + ρ
∂Rw0
∂ρ

(1− (1− cρ)Rr0)− (Rw0 − 1)cρRr0

=(Rw0 − 1)Rw0 − (Rw0 − 1)(1− cρ)Rr0 + ρ
∂Rw0
∂ρ

(1− (1− cρ)Rr0)− (Rw0 − 1)cρRr0

=(Rw0 − 1)Rw0 − (Rw0 − 1)Rr0 + ρ
∂Rw0
∂ρ

(1− (1− cρ)Rr0)

=(Rw0 − 1)(Rw0 −Rr0) + ρ
∂Rw0
∂ρ

(1− (1− cρ)Rr0) (34)

From (33) notice that

1− (1− cρ)Rr0 ≤ 0 =⇒ Rr0 ≥
1

1− ρc
. (35)

If the inequality in (35) holds, and recalling that Rw0 > 1, Rw0 > Rr0 and
∂Rw0
∂ρ

< 0, for ρ < ρ∗, we

have found sufficient conditions to show that
∂I3r
∂ρ

> 0.

Since we are working on the range 0 ≤ ρ < ρ∗, we get that
1

1− ρc
<

1

1− ρ∗c
. Thus, if the inequality

in (35) does not hold (i.e., 1 ≤ Rr0 <
1

1− ρ∗c
)1, we cannot assure that I3r is a monotonically increasing

function of ρ.

To approach the question of whether
∂I3r
∂ρ

> 0 or not if 1 ≤ Rr0 <
1

1− ρ∗c
given ρ ∈ [0, ρ∗], we proceed

as follows. Showing that
∂I3r
∂ρ

∣∣∣
ρ=ρ∗

< 0 is a sufficient condition to prove that I3r is not a monotonically

increasing function of ρ in the interval ρ ∈ [0, ρ∗]. Recalling that Rw0 (ρ∗) = Rr0, expression (34) becomes

ρ∗
∂Rw0
∂ρ

(1− (1− cρ∗)Rr0).

Then, it is easy to see that if Rr0 <
1

1− ρ∗c
, then the above expression is negative. Thus, we have shown

that in this case, I3r is not a monotonically increasing function of ρ in the interval ρ ∈ [0, ρ∗]. Moreover,

numerically we find that in such case I3r (ρ) is a concave function in the interval [0, ρ∗] (see Figure S10).

This behavior is more accentuated for larger c.

1Since ρ∈ [0, ρ∗], then (1 − ρc)−1 < (1− ρ∗c)−1. Also, the interesting cases are those in which the resistant strain can
potentially emerge and persist, i.e., I2r > 0. Thus, Rr

0 ≥ 1.
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Figure S10. I3r (ρ) for 1 < Rr
0 <

1

1 − ρ∗c
(black, solid) (φ = 0.42) and for Rr

0 >
1

1 − ρ∗c
(red, solid) (φ = 0.5).

Dotted lines are the corresponding I3w(ρ) curves. The vertical dashed lines are the values of ρ∗ corresponding to
φ = 0.42, 0.5. If we are in the first case, then increasing treatment is the best. Other parameters:
γr = γu = 0.2, τ = 0, βu = 0.5,m = 0.34, c = 0.2. A low value of c was used to magnify the difference between
the two cases.

4.3 Showing that
∂I3w
∂ρ

< 0 for 0 < ρ < ρ∗

Let I3w = I3u + I3t and ξ := 1− Rr0
Rw0

, then

I3w = ξΨ

[
ρ

(
(1− c)µ

σt
− µ

σu

)
+

µ

σu

]
. (36)

Therefore

∂I3w
∂ρ

=

(
∂ξ

∂ρ
Ψ + ξ

∂Ψ

∂ρ

)[
ρ

(
(1− c)µ

σt
− µ

σu

)
+

µ

σu

]
+ ξΨ

(
(1− c)µ

σt
− µ

σu

)
(37)

Notice that since Ψ > 0 and ξ > 0 in this epidemiological context, the second term in (37) is always

negative (recall σu < σt). Expanding the term in brackets in (37) we get

ρ

(
(1− c)µ

σt
− µ

σu

)
+

µ

σu
= µ

(
ρ(1− c)σu − ρσt + σt

σtσu

)
= µ

(
ρ(1− c)σu + (1− ρ)σt

σtσu

)
> 0

Thus, from (37) it is clear that to prove
∂I3w
∂ρ

< 0 we need to prove that

(
∂ξ

∂ρ
Ψ + ξ

∂Ψ

∂ρ

)
< 0. We have



18

∂Ψ

∂ρ
=

Rr0
(Rw0 )2

∂Rw0
∂ρ

and
∂ξ

∂ρ
=

∂Rw0
∂ρ

[1− (1− ρc)Rr0]− cRr0(Rw0 − 1)

[Rw0 − (1− ρc)Rr0]2

Thus,

(
∂ξ

∂ρ
Ψ + ξ

∂Ψ

∂ρ

)
becomes

[
∂Rw

0

∂ρ
[1 − (1 − ρc)Rr

0] − cRr
0(Rw

0 − 1)

] [
(Rw

0 )2 −Rw
0 R

r
0

]
+Rr

0
∂Rw

0

∂ρ
(Rw

0 − 1)[Rw
0 − (1 − ρc)Rr

0]

(Rw
0 )2[Rw

0 − (1 − ρc)Rr
0]2

(38)

Recognizing that the denominator of (38) is always positive, we focus on the sign of the numerator.

The second term in the sum of the numerator is always negative given that
∂Rw0
∂ρ

< 0. In the first term,

the term in the second square brackets is always positive. Conversely, the term in the first square brackets

is negative if 1− (1− ρc)Rr0 > 0. If this last inequality holds, then we have found sufficient conditions to

prove that

(
∂ξ

∂ρ
Ψ + ξ

∂Ψ

∂ρ

)
< 0 and consequently that

∂I3r
∂ρ

> 0 in (0, ρ∗).

We now use heuristic arguments to show
∂I3w
∂ρ

< 0 for the case 1 < (1 − ρc)Rr0. For this case we

already showed analytically that
∂I3r
∂ρ

> 0 for ρ ∈ [0, ρ∗]. We interpret these partial derivatives as flows

from and to the infected and the susceptible classes. For instance, FS =
S(ρ)− S(ρ+ δρ)

δρ
is the flow of

individuals to the S class due to a change in treatment δρ. Based on a conservation of mass (individuals)

argument, we can write

FS3 + FI3w + FI3r ≡ 0. (39)

Notice that, unlike the unidirectional flow of individuals in time (measured by the time derivatives), the

flow with respect to ρ allows individuals to move back and forth within these classes. If 1 < (1− ρc)Rr0,

then FI3r is positive. It is also easy to check that if
∂Rw0
∂ρ

< 0, then FS3 ≈ ∂S3

∂ρ
= − 1

(Rw0 )2
∂Rw0
∂ρ

> 0.

Hence, increasing ρ increases the flow of individuals towards S3 and I3r ; thus to satisfy expression (39) we

must have FI3w ≈
∂I3w
∂ρ

< 0 for ρ ∈ [0, ρ∗]. This proves that
∂I3w
∂ρ

< 0 also for the case 1 < (1− ρc)Rr0, and

since we had already proved it when 1 > (1− ρc)Rr0, we have shown that indeed
∂I3w
∂ρ

< 0 for ρ ∈ [0, ρ∗].

4.4 Finding ρe and ρr

We obtain ρe from I3w(ρe) = I3r (ρe). This yields

ρe =
1

2α1α2

{
σ2
t (2σr + σu(c− φ))− (1− c)σtσu(σr − σuφ+ σrm)−
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√
σ2
t {−4α1(σr − σuφ)α2 + [cσtσu − σu(σt − (1− c)σu)φ+ σr[2σt − (1− c)σu(1 +m)]]2}

}
where we have defined σt = γu+τ +µ, σu = γu+µ and σr = γr+µ. Also α1 = cσtσu+σr(σt− (1−c)σu)

and α2 = σt − (1− c)σum.

We derive ρr from I3r = I2r , yielding

I3r (ρ) = I2r

cρ
µ

σr

Rw0 − 1

Rw0 − (1− cρ)Rr0
=
µ(Rr0 − 1)

φβu

cρ

Rw0 − (1− cρ)Rr0
=

(Rr0 − 1)

Rr0(Rw0 − 1)

cρ =
(Rr0 − 1)

Rr0(Rw0 − 1)
(Rw0 − (1− cρ)Rr0)

cρ =
(Rr0 − 1)(Rw0 −Rr0)

Rr0(Rw0 − 1)
+

(Rr0 − 1)

Rr0(Rw0 − 1)
cρRr0

cρ

[
1− (Rr0 − 1)

Rr0(Rw0 − 1)
Rr0

]
=

(Rr0 − 1)(Rw0 −Rr0)

Rr0(Rw0 − 1)

cρ

[
Rr0(Rw0 − 1)− (Rr0 − 1)Rr0

Rr0(Rw0 − 1)

]
=

(Rr0 − 1)(Rw0 −Rr0)

Rr0(Rw0 − 1)

cρ [Rr0(Rw0 − 1)− (Rr0 − 1)Rr0] = (Rr0 − 1)(Rw0 −Rr0)

cρ
[
Rr0R

w
0 − (Rr0)2

]
= (Rr0 − 1)(Rw0 −Rr0)

=⇒ ρr =
Rr0 − 1

Rr0c
.
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