


Appendix S2
Derivation of the requirement that  sequestered iRBC must have a growth advantage over non-sequestered iRBC

Let A be the “advantage” a parasite has by sequestering, and define [image: ]. 

We first consider how the ratio, R, changes as the parameter gt changes. Let . Then when Z increases, R decreases, and visa-versa (provided that s remains constant). We can establish that:


and therefore whenever

 	S.1
the change in R is in the same direction as the change in gt.

[bookmark: _GoBack]We next consider how the equilibrium growth rate in blood and tissue, γ, changes as the parameters r and s change. We can establish that:

[bookmark: eq_dGamma]. 	S.2


Using equation S.2 we see that when A < 0 then[image: ] > 0 and when A > 0 then [image: ] < 0. A similar expression can be used to show that when A < 0 then   < 0 and when A > 0 then  > 0. 



oleObject3.bin

image5.emf



dγ
dr



= −
gt
2
1− (gtr + s) − A



β
⎛
⎝⎜



⎞
⎠⎟



= −
gt
2
1− (gtr + s) − A



(gtr + s) − A( ) + 4sA
⎛



⎝
⎜
⎜



⎞



⎠
⎟
⎟










d

g

dr

=-

g

t

2

1

-

(

g

t

r

+

s

)

-

A

b

æ

è

ç

ö

ø

÷

=-

g

t

2

1

-

(

g

t

r

+

s

)

-

A

(

g

t

r

+

s

)

-

A

( )

+

4

sA

æ

è

ç

ç

ö

ø

÷

÷


oleObject4.bin

image6.png




image7.emf



dγ
ds










dg

ds


oleObject5.bin

oleObject6.bin

image1.png
A=(g,_6,)_(g3_63)




image2.emf



Z = β + K − C
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