Appendix S4: Net production and net calcification

Prior work has shown that hourly rates of net community production often do not saturate with light intensity 
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 due to canopy effects [7].   Using continuous measurements of benthic metabolism, Falter et al. 2011, 2012 [5,6] found that hourly rates of gross community production in reef communities could be related to light according to a power law of the form
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where Ed is the downwelling planar flux of Photosynthetically Active Radiation (PAR) at the benthos and a1 is a coefficient which depends upon the rate of community production.  Hourly rates of net community calcification in reef communities are generally linearly correlated with Ed 
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where a2 is a coefficient which depends upon the rate of community net calcification.  While the exact functional dependency of calcification on light, temperature, net production, and/or carbonate chemistry remains the subject of ongoing study; or present objective was simply to create realistic diurnal variations in gnet (and similarly p) which sum to daily rates of metabolism consistent with values reported in the literature (Table 2).  Thus, in all simulations we assumed the same constant temperature (25°C) and the same diurnal light cycle given as
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where tsr and tss represent sunrise (6 am) and sunset (6 pm) respectively for a 12-hour day.  Given the constraints of daily P and Gnet imposed by Eq. 10 in the main text, we can thus eliminate Ed,max, a1, and a2 altogether to scale diurnal changes in p directly on daily integrated P
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where the sin1.2 term arises from the non-linear dependency of hourly gross production on light (Eq. 16).  We can further define the maximum hourly rate of gross production based on the daily integrated gross production
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Integrating Eq. 20, solving for 
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and substituting into Eq. 19 yields the following result
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We can also scale diurnal changes in gnet directly on daily integrated Gnet as
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While there is sparse data on depth-dependent changes in reef primary producer metabolism, work by Mass et al. 2007 [9] have shown that production, respiration, and calcification in corals decrease with depth at a rate much more slowly than light; indicative of the ability of reef primary producers to adapt to the lower light levels deeper on the reef.  In that study, calcification rates were constant to a depth that was equal to roughly one-half the optical depth or 
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 is the diffuse attenuation coefficient for planar downwelling PAR.  Below 
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, rates of production, respiration, and calcification decreased exponentially at a constant rate roughly proportional to ~
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kd.  Therefore, we modeled the depth-dependency of p, r, and gnet in the present study according to

 MACROBUTTON MTPlaceRef \* MERGEFORMAT (23)


[image: image14.wmf]dm0

m0

2

()

3

m0

()

khh

Mhh

Mh

Mehh

æö

--

ç÷

èø

£

ì

ï

=

í

ï

<

î


where M represents p, r, or gnet as defined in the main text.  For the present study we chose 
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 = 0.15 m-1 based on data from our own studies and that provided in the literature yielding 
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.  Prior modelling efforts have indicated that variations in water chemistry are only weakly dependent on the exact relationship between benthic metabolism and depth given that the chemical signature of benthic metabolism becomes naturally diluted by an increasingly deeper water column [8].  Thus, simulations results are relatively insensitive to the exact formulation used in Eq. 23.
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