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Appendix A IBM discretization and implementation

A.1 Discretization

To simulate the IBM, we consider a regular time step ∆t and a discrete 2D-space (a square toroidal
8-neighbourhood lattice). We discretized the spatial kernels ω1 and ω2 for the movement and infection
processes (Equations 1 and 3 of the paper). We used a uniform kernel function with a size equal to one
discrete space step for the infection kernel ω2 (See equation 1). This leads us to consider a contact per
time step between two individuals if these individuals are located in a same cell during ∆t:

ω2([0, 0]) = 1

ω2(x 6= [0, 0]) = 0
(1)

We used a uniform kernel function with a size equal to three discrete space steps for the move kernel
ω1 (see Equation 2). The individual can only move in a neighbour square:

ω1([x, y]) =
1

8
if x = ±1 or y = ±1

ω1([x, y]) = 0 otherwise
(2)

A.2 Initialization and dynamics of the discrete model

At the initialization, a state {x0
i , s

0
i } (with xi ∈ N2 and si ∈ {S,E, I,R}) is given for each individual

i ∈ [1, N ]. Then, for each time step, for each individual, we compute the next state ({xt+∆t
i , st+∆t

i })
according to the previous global state ({xti, sti})1≤i≤N .

• Computing new infectious state st+∆t
i

According to wether the individual infectious state is respectively S, E or I, we perform a random
selection using probability PE , PI or PR computed with Equations 3, 4 or 5 of the paper to compute
wether infectious state will be changed to respectively E, I or R. If the test succeeds, the state is
changed, if not, it stays the same.

• Computing new position xt+∆t
i

We first compute wether an individual moves or stays in the same cell. We perform a random
selection of probability P = PM (xt+∆t

i 6= xti). If the random selection fails, the position is not
changed, if it succeeds, the new position is computed as xt+∆t

i = xti + (x, y) with (x,y) randomly
chosen in {(x, y) | x = ±1 and y = ±1}

A.3 Computer implementation

The discrete model was implemented as a discrete event dynamic system with regular time step using
the virtual laboratory environment (VLE) [1]. The VLE is a set of tools based on discrete event system
Specification (DEVS) and application programming interfaces in C++ for modelling and simulation.
VLE provides a random number generator, is interfaced with the R statistical software [2] and enables
us to distribute the simulations of an experimental plan on several processors. We used the R statistical
software to generate the experimental plans and analyse simulation results.
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Appendix B Development and discretization of the moment ap-
proximation

Here, we present the development of pair correlation dynamics. The pair correlation CSS(ξ, t) can be
calculated for the susceptible-susceptible pairs as follows:

dCSS(ξ, t)

dt
=

Movement

 2λ

∫
ω1(ξ′)CSS(ξ + ξ′)dξ′

− 2λ|ω1(ξ)|CSS(ξ)

Infection

{
− 2β

∫
ω2(ξ′)TSSI(ξ, ξ′)dξ′

(3)

The susceptible-susceptible pair correlation dynamics depends on the two processes in the above
equation:

• The movement terms (the first two) are computed in the same way as for the CSI pairs (see
Subsection 2 in the ”Moment Approximation” Section of the paper).

• The infection term computes the expected number of susceptible individuals in situation ξ that
become infected. It depends on the triplet configuration TSSI and the interaction kernel ω2. If
an infectious individual is located at distance ξ′ from an individual of a pair at distance ξ, it can
destroy this pair.

There is a factor 2 before each term because the process can be applied on each individual of the pair.
The pair correlation CSE(ξ, t) can be calculated for the SE -pairs:

dCSE(ξ, t)

dt
=

Movement

 + 2λ

∫
ω1(ξ′)CSE(ξ + ξ′)dξ′

− 2λ|ω1(ξ)|CSE(ξ)

Infection


+ β

∫
ω2(ξ′)TSSI(ξ, ξ′)dξ′

− β
∫
ω2(ξ′)TSEI(ξ, ξ′)dξ′

Latency
{
− αCSE(ξ)

(4)

The susceptible-exposed pair correlation dynamics depends on the three processes in the above equa-
tion:

• The movement terms (the first two) are computed in the same way as the CSS pairs.

• The infection terms create and destroy some SE -pairs. The creation of a SE -pair depends on the
TSSI configuration and the interaction kernel ω2. When the susceptible individual of a SS -pair is
infected by an infectious individual located at distance ξ′, it creates a new SE -pair. The destruction
of a SE -pair depends on the TSEI configuration and the interaction kernel ω2. When the susceptible
individual of a SE -pair is infected by an infectious individual located at distance ξ′, it destroys the
SE -pair.
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• The latency term corresponds to the number of exposed individuals in a configuration at a distance
of ξ with a susceptible individual and hence create a new SI -pair at a distance of ξ if they become
infectious.

The dynamics of the second moments depends on the third moment Tijk(ξ, ξ′). This moment has to
be closed to perform the calculation. The moment closure is dealt with in Section B.1.

B.1 Moment closure

To achieve a closed dynamic system, the highest spatial moment must be replaced by a function of lower-
order moments. This expression constitutes the moment closure. In our case, the third moment must
be replaced by a function of the first and second moment. Moment closures are a key issue for moment
approximation because the quality of the moment approximation is directly linked to the used moment
closure. Several closures have been tested and studied in the literature [3]. The idea is to use different
closures which have been tested by [3]. More details are available in these references, especially for the
all properties linked to the different closures. We used power-2 closures already used by [3]. Power-2
closures are obtained by multiplying two of the three pair densities and by dividing by the density of
the opposite corner. In our case, it is important to take into account the correlation that leads to the
infection of susceptible individuals. This leads to the following approximation of the third moment:

Tijk(ξ, ξ′) =
Cij(ξ)Cik(ξ′)

Ni

(5)

If we consider this closure and the third moment used in the approximation, the correlation involved
in the infection process is taken into account.

B.2 Discretization

To implement the moment approximation, it is necessary to discretize the correlation functions. For this
purpose, the same discretization as in the individual-based model is used. The movement kernel and
the interaction kernel are the kernels described in appendix A. An infection of susceptible occurs only
if an infectious individual is located in the same cell. The individuals move to an adjacent cell with a
uniform probability. The current problem is considered as bidimensional. In other terms, we consider a
correlation matrix. This leads to a simplification of the dynamics as follows:

dNS

dt
= −βCSI(0, 0) (6)

dNI

dt
= βCSI(0, 0)− αNe (7)

dNI

dt
= αNe − γNi (8)

for the first moment dynamics. For the second moment dynamics, we have:

dCSS(xi, xj , t)

dt
=

Movement


2λ

2∑
i=0

2∑
j=0

CSS(xi−1, xj−1)

− 2λCSS(xi, xj)

Infection
{
− 2βTSSI([xi, xj ], [0, 0])

(9)
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dCSI(xi, xj , t)

dt
=

Movement


+ 2λ

2∑
i=0

2∑
j=0

CSI(xi−1, xj−1)

− 2λCSI(xi, xj)

Infection

{
− βTSII([xi, xj ], [0, 0])

− βCSI(xi, xj)δ(xi)δ(xj)

Recovery
{
− γCSI(xi, xj)

Latency
{
− αCSE(xi, xj)

(10)

dCSE(xi, xj , t)

dt
=

Movement


+ 2λ

2∑
i=0

2∑
j=0

CSE(xi−1, xj−1)

− 2λCSE(xi, xj)

Infection

{
+ βTSSI([xi, xj ], [0, 0])

− βTSEI([xi, xj ], [0, 0])

Latency
{
− αCSE(xi, xj)

(11)

B.3 Computer implementation

The MA model was implemented with Matlab software (using Mathworks c©).
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