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Best-fitted γ Factors and Additional Statistical Tests 
 

The mathematical framework of this study was devised to fit theoretical denaturation curves to 
normalized experimental formamide series.  When the experimental data show a nearly perfect sigmoidal 
profile as depicted in Figure S3A, the underlying assumption is that the upper plateau of the normalized 
profile represents a hybridization efficiency of 1, and similarly, the lower plateau a hybridization 
efficiency of 0.  Thus the experimental data can be directly matched with a theoretical curve obtained 
from calculated hybridization efficiencies.  However, in the absence of a full sigmoidal profile (e.g., 
Figures S3B and S3C), there is no firm basis for the actual experimental hybridization efficiency and the 
value of 1 in the normalized experimental series only represents the maximum observed signal.  
Therefore, the theoretical curve also needs to be modified to be matched with the experimental data.  This 
was done by including a γ factor in the estimation of theoretical denaturation profiles, as described by 
Equation 3 (see Methods).  There are three mathematical options for the determination of γ factors in 
Equation 3.  First, it is possible to simplify the mathematical model by setting γ = 1 for all probes. This 
corresponds to the abovementioned direct matching of theoretical hybridization efficiency values with 
normalized experimental data and is not effective when the experimental profile does not have a complete 
sigmoidal shape.  Second, γ can be calculated directly from the theoretical hybridization efficiency 
calculations so that the maximum predicted efficiency takes a value of 1, consistent with the 
normalization of the experimental data.  Third, it is possible to allow the calculation of γ factors by a 
secondary fitting of the experimental data to the modeling output.  The latter approach was preferred in 
this study because it allows for a better representation of the experimental data in incomplete sigmoidal 
profiles (Figure S3B) and in profiles in which kinetic limitations may affect the hybridizations at low 
formamide concentrations (Figure S3C).  However, allowing for best-fitting of γ factors may seem to 
overparameterize the models developed.  Overparameterization is not a rare problem in microarray data 
modeling as was mentioned previously [1].  In this study, the degree of freedom lost due to γ factors was 
taken into account by the key statistic used in model comparison (s2, Equation 5) and the cross validation 
tests carried out during modeling proved that the derived thermodynamic parameters were physically 
meaningful (Table 2).  Furthermore, we performed additional statistical tests (presented in this section) to 
clearly and directly demonstrate that the predictive power of our models is driven by thermodynamic 
parameters and not the γ factors, and therefore, that it is statistically legitimate to estimate these factors 
during the curve-fitting procedure.   

The additional analyses involved twelve statistical tests summarized in Table 3 (designated T1-
T12).  First (T1, Table 3), we show the effect of setting γ = 1 in Equation 3 for all probes in model M3.  
Compared with the original results in Table 2 for M3, this approach increased the overall error squares by 
about 50% (from 0.0081 to 0.0118) with a modest decrease in R2 (from 0.95 to 0.93).  To further evaluate 
the influence of γ factors in simulations, we performed T2 (Table 3).  In this case, original best-fitted γ 
factors from M3 were permuted between probes and the results for the key statistics were repeatedly 
obtained for different randomized permutations.  The average εov

2 and R2 converged to the respective 
values of 0.0157 and 0.90 after about 150 permutations, showing further decrease in the agreement 
between theoretical curves and experimental data, although the model sensitivity to γ factors was still 
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modest.  It should be noted that these tests did not affect the predictive error for half-denaturation points 
(err[FA]1/2; Table 2 and Table 3) as the melting point of a theoretical curve is mathematically independent 
of γ factors (see main text).  In comparison, the permutation of nearest neighbor free energy parameters 

largely degrades the predictive power of model M3, as shown by test T3 (γ factor best-fitting is in effect 
in this test).  Converging values after about 400 permutations showed more than quadrupled error squares 
and a relatively large decrease in R2 to 0.78 (Table 3), as compared to the results in Table 2.  More 
importantly, the average mid-point distance between theoretical and experimental curves increased from 
2.1% to 5.7% formamide and nearly half of the probes had a distance larger than 5% formamide, which 
we considere as the effective threshold for useful predictions.  Given that only 6.6% of the probes were 
above this threshold in the original calibrated model (Table 2), the role of the free energy calculations in 
predictive power is clear.  However, the total effect of free energy predictions is underestimated by this 
analysis as the model is still able derive useful information from probe sequence in the form of probe 
length. Since there is a general correlation between probe length and melting point, and since longer 
probes always have a larger sum of nearest neighbor free energies, some of the variation can still be 
captured by the probe free energy calculations. Thus, we measured the overall sensitivity of M3 to ∆Go 
values by permuting probe sequences during the analysis (T4, Table 3).  This corresponds to permuting 
the calculated ∆Go values between the probes in addition to permuting the nearest neighbors.  The result 
is poorer fitting quality with an R2 of 0.68 and with the majority of probes having a >5% error at the 
melting point.  Clearly, the model has no useful predictive power without using the thermodynamic 
information derived from probe sequences. 

Despite the loss of predictive ability after free energy permutations, the relatively large R2 value 
of 0.68 suggests that the model can still capture the majority of experimental variation.  How is this 
possible if γ factors also cannot explain the variation?  The answer must be in the two remaining 
modeling parameters for M3, namely, the effective probe concentration ({P}o) and the denaturant m-value.  
Indeed, when these two parameters are randomized in their physically meaningful ranges (assumed as 10-

12 to 1M for {P}o and 0-1 kcal/mol/% for m), R2 converges to a negative value (T5, Table 3) indicating that 
the model cannot follow the experimental trends any more.  Thus, the calibrated {P}o and m values 
(together with free energy values in the right scale) capture most of the experimental variation by defining 
the general sigmoidal shape of the denaturation profiles, while the exact values of nearest neighbor free 
energies adjust the positioning of the curves along the x-axis (formamide) to best fit the experimental 
data.  The γ factors account for a smaller portion of the variation by adjusting the curves along the y-axis 
(normalized signal intensity).  Combined with the fact that the best-fitted and cross-validated nearest 
neighbor rules of M3 correlate strongly with the original in-solution values (Figure 4), these analyses 
demonstrate the unequivocal physical meaning of the thermodynamic parameters within our modeling 
framework.   

Since T1 showed that γ factors had a minor contribution to the goodness of fitting, an inevitable 
question is what would be the effect of removing γ factors during model development.  To answer this 
question for M1 and M3, we performed T6 and T7, which successfully re-calibrated and validated these 
models using γ = 1.0 in Equation 3 for all probes (Table 3).  Although the decrease in the goodness of 
fitting was slightly larger for M1 (based on R2 values in Table 3 compared to those in Table 2), the 
relative strengths of the two models did not change appreciably with respect to the original modeling 
practice shown in Table 2.  Moreover, the new best-fitting values for the nearest neighbor free energies of 
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M3 were nearly identical to the original ones (linear relationship: y = 1.0702x - 0.0002, R2 = 0.999; data 
not shown).  Thus, omitting γ factors would not have caused significant changes in the results and 
conclusions from M1 and M3 models. 

The obvious next question is why γ factors are preferred.  Part of this answer is in Figure S3B, 
where the best-fitted γ factor is significantly different from 1.0 (γ = 1.5 in this case).  In this case, the 
theoretical hybridization efficiency values for the range of formamide are always lower than 1 and a full 
sigmoidal curve is not obtained.  Therefore, a multiplier is needed to align the maximum point of the 
theoretical curve with the normalized experimental profiles.  The probe set used in M1 and M3 (perfect 
matches) has only a few of these cases (for 93% of probes: 0.8< γ <1.2), and thus, the overall curve-fitting 
is less sensitive to the γ factor adjustment (see Figure S1A for a subpopulation of probes in this set).  To 
realize the potential of γ factors, we need to use a set that has a significant number of probes as in Figure 
S3B.  Since mismatched probes are more likely to behave this way, we tested the effect of removing γ 
factors on M5, our model that addresses central mismatches (T8, Table 3) (for 28% of probes = γ >1.2; 
see Figure S1B for a subpopulation of probes in this set).  In this case, the average error squares (0.0147) 
was nearly doubled compared to results in Table 2 (M5, central single mismatches), with a decrease in R2 
from 0.94 to 0.90.  Furthermore, the permutation of γ factors (test T9) effectively reduced fitting quality 
as expected (εov

2 = 0.028, R2 = 0.82).  Thus, the goodness of fits in the mismatched probe set of M5 were 
more sensitive to γ factors than the perfect match set of M3.    

We also explored the alternative estimation of γ factors that does not need best-fitting.  This 
involves the simple calculation of the factor as the inverse of the  maximum predicted hybridization 
efficiency (always attained at 0% formamide) which effectively means that the theoretical profiles are 
adjusted to have a maximum normalized value of 1.  The 10th test (T10, Table 3) shows that calculating γ 
this way for M5 would give lower residual squares and higher R2 than what is achievable without any 
adjustment (i.e., in comparison to T8, where γ = 1) and the goodness of fitting is marginally different 
from the original M5 results in Table 2 (central single mismatches).  In comparison, the permutation of 
the 104 loop free energy parameters of M5 results in a greater loss of goodness of fitting (T11, Table 3), 
with the additional decrease in the percentage of probes showing good half-denaturation point predictions 
from 94.5 to 82%.  Note that this is still a modest degradation of fitting quality compared to the effect of 
permuting nearest neighbor free energies in M3 (see T3, Table 3), because the true nearest neighbors that 
M5 inherits from the parent model M3 dominate the overall probe free energy calculations (see Methods).  
In other words, M5 is able to capture most of the experimental variation by calibrated thermodynamic 
parameters inherited from M3, while the additional loop free energy parameters of M5, by their 
definition, fine tune the position of the theoretical profiles along the x-axis (formamide) to best fit the 
experimental data.  Therefore, the model simulations are primarily driven by thermodynamic parameters 
while γ factors are secondary parameters that can either be calculated from the predictions at 0% 
formamide or best-fitted for each probe.   

As a final test, we performed T12 (Table 3) to show that the fixed γ factor approach could indeed 
be used in model M5 to replace best-fitted γ factors without significantly affecting the original fitting 
performance.  This test was clearly positive, with the average predictive error in half-denaturation points 
not different than the original model (see Table 3 and Table 2).  In addition, the loop free energy values 
obtained this way showed only small differences from the original ones (linear relationship: y = 1.05x - 
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0.13, R2 = 0.996; data not shown).  Then why do we favor best-fitted γ factors against fixed values to 
avoid the addition of new parameters to modeling?  This is partially answered by Figure S3C showing a 
frequent case where an increase in signal intensity is observed at lower formamide points (see Figure S1A 
for many examples), possibly due to kinetic limitations posed by secondary structures (see main text).  
This artifact obscures the melting behavior definable by our two-state model, as the maximum observed 
signal intensity probably does not match 100% hybridization efficiency, yet it has to be assigned the value 
of 1 in the normalized profile (Figure S3C).  The situation can also be described as a missing upper 
plateau of the sigmoidal profile, which is better handled by the best-fitted γ factor as clearly seen in 

Figure S3C.  Furthermore, the alternative calculation of  γ as the inverse of the hybridization efficiency at 
0% formamide always fixes both theoretical and experimental maxima to a value of 1, giving a single 
experimental value in a formamide series (that with maximum signal intensity) the control over the fitting 
quality for the probe.  This can amplify the effect of experimental noise on parameter estimations.  
Instead, best-fitted γ factors align the theoretical curve with the experimental profile using the information 
in the entire series, thereby minimizing the effect of experimental noise.  In retrospect, the small 
differences in thermodynamic parameters derived with and without γ factors reflect the effect of these 
experimental artifacts on the latter.  Therefore, the parameters obtained with best-fitted γ factors in this 
study are our best estimates given the microarray data.   

In conclusion, the best-fitting approach to calculate γ factors was an effective way of buffering 
experimental artifacts of formamide denaturation without overparameterizing the models developed.  
Modeling predictions were almost fully driven by thermodynamic parameters that reflect our best 
estimates from data.   
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