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Supplementary Data S3: Effect of the fragmentation
distribution on the kinetics of the Xue et al. model [1]

Xue et al investigated β2−microglobulin growth, using models including different processes: a pre-
polymerization step (characterized by either no pre-polymerization, or monomer-dimer equilibrium and
dimer addition mechanism, or conformation exchange), an elongation of the aggregates following a step,
a linear or a power function, and a possible secondary process such as fragmentation.

1 Conversion of the Xue et al ODE model into a PDE model:
example of the best-fit model.

Their best-fit model is given by the following processes:

• no conformational exchange, no coalescence and no degradation of polymers or monomers,

• the size of the nucleus is i0 = 2 and denucleation occurs only through depolymerization,

• polymerization and depolymerization follow a step function with a step at i = 6,

• fragmentation into two smaller polymers occurs.

Thus, using the previously introduced notations, the original ODE system can be simplified as follows:

dc1
dt

= −i0kNonc
i0
1 + i0k

N
offci0 − c1

∑
i≥i0

kionci, (1)

dci0
dt

= kNonc
i0
1 − kNoffci0 − ki0onc1ci0 + 2

∑
j≥i0+2

ki0,joffcj (2)

dci
dt

= c1(ki−1on ci−1 − kionci)− (kidepci − ki+1
dep ci+1) + 2

∑
j≥i+2

ki,joffcj −K
i
offci. (3)

Unlike the formulation of Xue et al., we did not introduce fragmentation into polymers of size 1, which
can be included in the depolymerization terms. For the particular choice of fragmentation made in [1],
however, fragmentation in polymers of size 1 is close to 0. This ODE system is then formally equivalent
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to the following PDE system:

dc1
dt

= − i0k
N
onkon(x0)ci0+1

1

kNoff + kon(x0)c1
− c1

∞∫
x0

kon(x)c(t, x)dx, (4)

∂c(t, x)

∂t
= −c1

∂

∂x

(
kon(x)c(t, x)

)
+

∂

∂x

(
kdep(x)c(t, x)

)
+ 2

∞∫
x

koff (x, y)c(t, y)dy −Koff (x)c(t, x), (5)

c(t, x0) =
kNonc

i0
1

kNoff + kon(x0)c1
. (6)

Note that our notations are slightly different from those presented in the SI of [1]. Due to the particular
shape of the polymerization process, with a step at i = 6, it may be preferable to keep all the ODEs
(3) occurring for i ≤ 6 and consider the PDE (5) only for i ≥ 6. Though nothing is indicated in [1],
we suspect that the polymerization rate is much larger for i ≥ 6 than for i ≤ 6, and on the contrary
that depolymerization is much smaller for larger i. If true, this would be interpreted as in some sense an
energetic barrier or a kind of ’second nucleus’ for i = 6. We then adapt the boundary condition (6) in the
case where depolymerization and fragmentation for small polymers can be ignored and state, supposing
k5on � k6on and thus an instantaneous equilibrium:

c(t, x0) =
k5on
k6on

c5, (7)

c5 given by Equation (3) taken for i = 5. A more detailed study would require knowing the order of
magnitude of the best-fit parameter values.

2 Discussion on the Fragmentation Kernel

2.1 Discrete setting

The strategy developed in [1] to analyse the growth of amyloid fibrils consists in fitting transitional param-
eters of experimental reaction progress curves with 21 mathematical models combining pre-polymerization,
elongation and fragmentation processes. In their papers, Xue and co-workers compare two different pre-
polymerization and three different elongation functions, but only one fragmentation distribution according
to the following equation based on statistical mechanical considerations for linear polymers [2]:

kj,ioff = a
(
j(i− j)

)b−1( (i− j)ln(j) + jln(i− j)
ib+1

)
(8)

with ki,joff the first order fragmentation rate of a species of size i into an aggregate of size j and an
aggregate of size j − i, a the overall amplitude and b describing the size and position dependence of the
fragmentation rate constant.

In order to generalize this approach to other fragmentation processes, we investigated the effect of
the distribution of fragmentation on the transitional parameters, namely the length of the lag phase and
the slope of the growth curve at the inflexion point. We simulated the following model (see main text for
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notations and assumptions, equations [30]–[32]):

dc1
dt

= −i0kNonc
i0
1 + i0k

N
offci0 − c1

∑
i≥i0

kionci, (9)

dci0
dt

= kNonc
i0
1 − kNoffci0 − ki0onc1ci0 + 2

∑
j≥i0+2

ki0,joffcj (10)

dci
dt

= c1(ki−1on ci−1 − kionci)− (kidepci − ki+1
dep ci+1) + 2

∑
j≥i+2

ki,joffcj −K
i
offci.

with two different distributions for the fragmentation : (i) the fragmentation rate defined by (8), as in [1],

and (ii) a uniformly distributed fragmentation rate along the aggregates (i.e. kj,ioff =
Ki

off

i−1 constant for

j ≤ i − 1). The total rate Ki
off =

∑
j

kj,ioff with which a polymer of size i can fragmentate to give

smaller aggregates was taken to be equal in both cases to study only the effect of the distribution of the
fragmentation rate among smaller polymers:

Ki
off =

∑
j≤i

a
(
j(i− j)

)b−1( (i− j)ln(j) + jln(i− j)
ib+1

)
. (11)

Figure S4 Left represents the typical shape of these two distributions for an aggregate of size i = 20.
The other processes were taken as for the best fitting model of [1], i.e. no pre-polymerization and a
fragmentation described by a step law. The numerical values used in the simulations were chosen to
roughly reproduce the experimental curves of Xue et al [1]:

• kion = 0.00002µM−1h−1 for i < ns and 0.9µM−1h−1 for i ≥ ns

• kNon = k1on and kNoff = ki0dep

• kidep = 0.5µM−1h−1 for i < ns and 10−5µM−1h−1 for i ≥ ns

• ns = 6

• a = 0.0001µM−1h−1

• b = 5

• i0 = 2

Figure S4 Right represents the normalized reaction progress curves for three different initial concen-
trations (50µM , 100µM and 150µM). Table S2 represents the transitional parameters of these curves,
automatically extracted as described in [1]. One can observe graphically and numerically that these
parameters are not very sensitive to the distribution of fragmentation.

2.2 Continuous setting

As stated above, the fragmentation kernel proposed by [1] is given by Equation (8). For a continuous
model, a first attempt would be to simply replace j < i by x < y ∈ (0,+∞). However, in such a case ln(x)
may become negative, so to avoid this we use the artefact of replacing ln(j) by ln(x+ 1), and ln(i− j) by
ln(y − x + 1). Indeed, in the original article [2] quoted by [1], polymers’ diffusion coefficient are defined
using a formula of Riseman and Kirkwood [3]. In this last article, ln appears through ln(1/n), where n
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being the number of monomers inside a polymer is supposed to be large, so that it is possible to replace
it by ln(1/(n+ 1)). We thus obtain the following formula:

koff (x, y) = a(x(y − x))b−1
(y − x)ln(1 + x) + xln(1 + y − x)

yb+1
. (12)

In [1], fragmentation as a secondary process was requested to fit β2-microglobulin experimental data. In
addition, fragmentation seems to be a critical process in some others fibrillation processes, including prion
strains [4]. Thus, developing a strategy that would help to characterize not only the magnitude of the
fragmentation but also the distribution of this fragmentation along the aggregate size appears essential.
Many studies suggest using the size distribution of aggregates to characterize more fully the distribution
of elongation and fragmentation parameters [5–7] (see Figure S5), through PDE formalism and inverse
problem techniques, for instance.
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Figure Legends

Figure S4. Left: Size distribution of the fragmentation rate for an aggregation of size 20,
following a uniform distribution (black) or a mechanical-based distribution (red) of fragmentation. Right:
Simulated normalized reaction progress curves of amyloid formation for a uniform distribution
(black) and a mechanical-based distribution (red) of fragmentation. See below for the numerical values.

Figure S5. Examples of simulated size distribution of the aggregates for a uniform distri-
bution (black) and a mechanical-based distribution (red) of fragmentation. See above for the
numerical values.
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Tables

Table S2. Transitional parameters
Initial concentration Parameter Xue et al. fragmentation Uniform fragmentation
150µM Tlag (h) 0.189 0.189

K (µM.h−1) 0.010 0.010
100µM Tlag (h) 0.189 0.189

K (µM.h− 1) 0.007 0.007
50µM Tlag (h) 13.91 14.23

K (µM.h−1) 0.189 0.189

Transitional parameters extracted from the simulated reaction progress curves represented in Figure S4
Right
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