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Supplementary Methods

Mean field approximation

The mean field approximation provides a simplification of the integrate-and-fire dynamics considered
in the spiking simulations, which are computationally expensive and are therefore not suitable for ex-
haustive parameter explorations. The details of the complete mean field analysis of neural networks
with conductance-based synaptic inputs can be found in Brunel and Wang [1]. In this work, we have
used the mean field approximation therein derived to scan the parameter space {ωI , ω+}. Following
this approximation, the stationary dynamics of each neural population is described by the population
transduction function. This provides the average population rates after a period of dynamical transients
as a function of the average input current. Such stationary rates can be found as the stable solutions of
a self-consistency condition and correspond to the stable attractors of the structured network.

In this formulation the potential of a neuron is calculated as:
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where V (t) is the membrane potential, x labels the populations (i.e. activated selective subpopulations,
non-activated selective subpopulations, nonselective cells and inhibitory cells), τx is the effective mem-
brane time constant, µx is the mean value the membrane potential would have in the absence of spiking
and fluctuations, σx measures the magnitude of the fluctuations and η is a Gaussian process with ab-
solute exponentially decaying correlation function and time constant τAMPA. The magnitudes µx and σx

are given by the following equations:
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In these equations νext corresponds to the external incoming spiking rate, νI is the spiking rate of the
inhibitory population, and τm = Cm/gm (whose value depends on whether excitatory or inhibitory cells
are considered, see Table 1 in main text). The rest of variables are given by:
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J = 1 + γ exp(−β〈Vx〉) (S.17)

〈Vx〉 = µx − (Vthr − Vreset)νxτx (S.18)

where p denotes the number of selective excitatory subpopulations (i.e. eight throughout this study), fx

is the coding level or fraction of neurons in each excitatory subpopulation x, ωjx is the synaptic weight of
the connections from population x to population j, νx is the spiking rate of the excitatory subpopulation
x, γ = [Mg2+]/3.57, β = 0.062, and the average membrane potential 〈Vx〉 has a value in the range
[−55,−50] mV. In this study, the synaptic weights described in Fig. 2 have been used. In particular, in
those cases when ωGABA

jx is different from zero it always takes the value ωI . Furthermore, ωAMPA

jx = ωNMDA

jx ,
which may take the values ω+, ω− or ω = 1, depending on the neural populations x and j which are
connected.

The average firing rates of the different populations in the network can be calculated in the mean field
approximation from the solution of a set of n nonlinear equations which depend on µx and σx as follows:

νx = Φ(µx, σx) x = 1, ..., n (S.19)

where Φ is the transduction function of population x (i.e. the f-I curve), which enables the calculation of
the output rate of population x in terms of its inputs, which in turn also depend on the spiking rates of
all the rest of the populations. The transduction function is given by:
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A set of first-order differential equations (Eq. S.23) whose fixed points correspond to solutions of Eq.
S.19 are used to solve the entire set of equations.
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The network dynamics could converge to different attractors states corresponding to multi-item mem-
ory states or m-memory states, with m being the number of coactivated subpopulations. The working
point was selected based on a systematic scan of the parameter space {ωI , ω+} with the aim to reproduce
the experimental data reported in the literature. To this end, a set of initial conditions obtained by
varying the number of initially coactivated populations both in the saliency and no saliency condition
were considered (see Fig. 2). In order to exhaustively search the possible fixed points for the selected
working point {ωI = 1.15, ω+ = 2.2}, we integrated Eq. S.23 with 1000 different initial conditions (se-
lected randomly except from those already included in the previous study) for the population firing rates.
The same upper working memory capacity limit (i.e. 4 items) found in Fig. 2 was obtained in this study.
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